Analytic Combinatorics
by Philippe Flajolet, Robert Sedgewick
Publisher: Cambridge University Press 2008
ISBN/ASIN: 0521898064
ISBN-13: 9780521898065
Number of pages: 822
Description:
Analytic Combinatorics is a self-contained treatment of the mathematics underlying the analysis of discrete structures, which has emerged over the past several decades as an essential tool in the understanding of properties of computer programs and scientific models with applications in physics, biology and chemistry. Thorough treatment of a large number of classical applications is an essential aspect of the presentation. Written by the leaders in the field of analytic combinatorics, this text is certain to become the definitive reference on the topic. The text is complemented with exercises, examples, appendices and notes to aid understanding therefore, it can be used as the basis for an advanced undergraduate or a graduate course on the subject, or for self-study.
Download or read it online for free here:
Download link
(9.8MB, PDF)
Similar books

by Dainis Zeps - Latvian University
Contents: Permutations; Combinatorial maps; The correspondence between combinatorial maps and graphs on surfaces; Map's mirror reflection and dual map; Multiplication of combinatorial maps; Normalized combinatorial maps; Geometrical interpretation...
(4386 views)

by Gian-Carlo Rota
In 1998, Gian-Carlo Rota gave his famous course at MIT. John N. Guidi took notes in a verbatim manner conveying the substance of the course. Topics covered included sets, relations, enumeration, order, matching, matroids, and geometric probability.
(3458 views)

by Edward A. Bender, S. Gill Williamson - Dover Publications
This introduction to combinatorics, the interaction between computer science and mathematics, is suitable for upper-level undergraduates and graduate students in engineering, science, and mathematics. Some ability to construct proofs is assumed.
(8028 views)

by David Guichard - Whitman College
The book covers the classic parts of Combinatorics and graph theory, with some recent progress in the area. Contents: Fundamentals; Inclusion-Exclusion; Generating Functions; Systems of Distinct Representatives; Graph Theory; Polya-Redfield Counting.
(4133 views)