Logo

Geometric Transformation of Finite Element Methods: Theory and Applications

Small book cover: Geometric Transformation of Finite Element Methods: Theory and Applications

Geometric Transformation of Finite Element Methods: Theory and Applications
by

Publisher: arXiv.org
Number of pages: 21

Description:
We present a new technique to apply finite element methods to partial differential equations over curved domains. Our main result is that a recently developed broken Bramble-Hilbert lemma is key in harnessing regularity in the physical problem to prove higher-order finite element convergence rates for the parametric problem.

Home page url

Download or read it online for free here:
Download link
(300KB, PDF)

Similar books

Book cover: Finite Difference Computing with PDEsFinite Difference Computing with PDEs
by - Springer
This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners.
(6099 views)
Book cover: Notes on Numerical Linear AlgebraNotes on Numerical Linear Algebra
by
Tutorial describing many of the standard numerical methods used in Linear Algebra. Topics include Gaussian Elimination, LU and QR Factorizations, The Singular Value Decomposition, Eigenvalues and Eigenvectors via the QR Method, etc.
(14740 views)
Book cover: Numerical StabilityNumerical Stability
by - Leiden University
Stability estimates and resolvent conditions in the numerical solution of initial value problems. Contents: Partial differential equations and numerical methods; Linear algebra; Stability in the numerical solution of differential equations; etc.
(10445 views)
Book cover: Numerical Methods Course NotesNumerical Methods Course Notes
by - University of California at San Diego
From the table of contents: A 'Crash' Course in octave/Matlab; Solving Linear Systems; Finding Roots; Interpolation; Spline Interpolation; Approximating Derivatives; Integrals and Quadrature; Least Squares; Ordinary Differential Equations.
(15502 views)