Linear Partial Differential Equations and Fourier Theory
by Marcus Pivato
Publisher: Cambridge University Press 2005
ISBN/ASIN: 0521136598
ISBN-13: 9780521136594
Number of pages: 619
Description:
This is a textbook for an introductory course on linear partial differential equations and initial/boundary value problems. It also provides a mathematically rigorous introduction to basic Fourier analysis, which is the main tool used to solve linear PDEs in Cartesian coordinates. Finally, it introduces basic functional analysis. This is necessary to rigorously characterize the convergence of Fourier series, and also to discuss eigenfunctions for linear differential operators.
Download or read it online for free here:
Download link
(13MB, PDF)
Similar books

by J. Delsarte - Tata Institute of Fundamental Research
Subjects treated: transmutations of singular differential operators of the second order in the real case; new results on the theory of mean periodic functions; proof of the two-radius theorem, which is the converse of Gauss's classical theorem.
(8324 views)

by Sheldon Axler, Paul Bourdon, Wade Ramey - Springer
A book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the text. The authors have taken care to motivate concepts and simplify proofs.
(13426 views)

by Russell Brown - University of Kentucky
These notes are intended for a course in harmonic analysis on Rn for graduate students. The background for this course is a course in real analysis which covers measure theory and the basic facts of life related to Lp spaces.
(9628 views)

by A. Zygmund, et al. - Princeton University Press
In the theory of convergence and summability, emphasis is placed on the phenomenon of localization whenever such occurs, and in the present paper a certain aspect of this phenomenon will be studied for the problem of best approximation as well.
(7064 views)