Linear Partial Differential Equations and Fourier Theory
by Marcus Pivato
Publisher: Cambridge University Press 2005
ISBN/ASIN: 0521136598
ISBN-13: 9780521136594
Number of pages: 619
Description:
This is a textbook for an introductory course on linear partial differential equations and initial/boundary value problems. It also provides a mathematically rigorous introduction to basic Fourier analysis, which is the main tool used to solve linear PDEs in Cartesian coordinates. Finally, it introduces basic functional analysis. This is necessary to rigorously characterize the convergence of Fourier series, and also to discuss eigenfunctions for linear differential operators.
Download or read it online for free here:
Download link
(13MB, PDF)
Similar books

by A. Zygmund, et al. - Princeton University Press
In the theory of convergence and summability, emphasis is placed on the phenomenon of localization whenever such occurs, and in the present paper a certain aspect of this phenomenon will be studied for the problem of best approximation as well.
(4640 views)

by S.R.S. Varadhan - New York University
Fourier Series of a periodic function. Fejer kernel. Convergence Properties. Convolution and Fourier Series. Heat Equation. Diagonalization of convolution operators. Fourier Transforms on Rd. Multipliers and singular integral operators. etc...
(7203 views)

by John P. Boyd - Dover Publications
The text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, cardinal functions, etc.
(16088 views)

by Thomas Wolff - American Mathematical Society
An inside look at the techniques used and developed by the author. The book is based on a graduate course on Fourier analysis he taught at Caltech. It demonstrates how harmonic analysis can provide penetrating insights into deep aspects of analysis.
(7861 views)