Logo

A Brief Introduction to Machine Learning for Engineers

Large book cover: A Brief Introduction to Machine Learning for Engineers

A Brief Introduction to Machine Learning for Engineers
by

Publisher: arXiv.org
Number of pages: 237

Description:
This monograph aims at providing an introduction to key concepts, algorithms, and theoretical results in machine learning. The treatment concentrates on probabilistic models for supervised and unsupervised learning problems. It introduces fundamental concepts and algorithms by building on first principles, while also exposing the reader to more advanced topics with extensive pointers to the literature, within a unified notation and mathematical framework.

Home page url

Download or read it online for free here:
Download link
(2.1MB, PDF)

Similar books

Book cover: Reinforcement Learning and Optimal ControlReinforcement Learning and Optimal Control
by - Athena Scientific
The book considers large and challenging multistage decision problems, which can be solved by dynamic programming and optimal control, but their exact solution is computationally intractable. We discuss solution methods that rely on approximations.
(647 views)
Book cover: Statistical Learning and Sequential PredictionStatistical Learning and Sequential Prediction
by - University of Pennsylvania
This text focuses on theoretical aspects of Statistical Learning and Sequential Prediction. The minimax approach, which we emphasize throughout the course, offers a systematic way of comparing learning problems. We will discuss learning algorithms...
(2204 views)
Book cover: Reinforcement LearningReinforcement Learning
by - InTech
This book describes and extends the scope of reinforcement learning. It also shows that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional controllers.
(15068 views)
Book cover: Elements of Causal Inference: Foundations and Learning AlgorithmsElements of Causal Inference: Foundations and Learning Algorithms
by - The MIT Press
This book offers a self-contained and concise introduction to causal models and how to learn them from data. The book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from data ...
(1197 views)