**An Introduction to Modular Forms**

by Henri Cohen

**Publisher**: arXiv.org 2018**Number of pages**: 58

**Description**:

Contents: Functional Equations; Elliptic Functions; Modular Forms and Functions; Hecke Operators: Ramanujan's discoveries; Euler Products, Functional Equations; Modular Forms on Subgroups of Gamma; More General Modular Forms; Some Pari/GP Commands.

Download or read it online for free here:

**Download link**

(430KB, PDF)

## Similar books

**Lectures on Analytic Number Theory**

by

**H. Rademacher**-

**Tata Institute of Fundamental Research**

In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. Contents: Formal Power Series; Analysis; Analytic theory of partitions; Representation by squares.

(

**6536**views)

**Introduction to Analytic Number Theory**

by

**A.J. Hildebrand**-

**University of Illinois**

Contents: Primes and the Fundamental Theorem of Arithmetic; Arithmetic functions (Elementary theory, Asymptotic estimates, Dirichlet series and Euler products); Distribution of primes; Primes in arithmetic progressions - Dirichlet's Theorem.

(

**9574**views)

**Lectures on Forms of Higher Degree**

by

**J.I. Igusa**-

**Tata Institute of Fundamental Research**

One of the principal objectives of modern number theory must be to develop the theory of forms of degree more than two,to the same satisfactory level in which the theory of quadratic forms is found today as the work of eminent mathematicians.

(

**7873**views)

**Lectures on a Method in the Theory of Exponential Sums**

by

**M. Jutila**-

**Tata Institute of Fundamental Research**

The author presents a selfcontained introduction to summation and transformation formulae for exponential sums involving either the divisor function d(n) or the Fourier coefficients of a cusp form; these two cases are in fact closely analogous.

(

**6883**views)