**Hopf Algebras, Quantum Groups and Yang-Baxter Equations**

by Florin Felix Nichita (ed.)

**Publisher**: MDPI AG 2019**ISBN-13**: 9783038973256**Number of pages**: 240

**Description**:

Various aspects of the Yang-Baxter equation, related algebraic structures, and applications are presented in this volume. The algebraic approach to bundles in non-commutative geometry and the definition of quantum real weighted projective spaces are reviewed.

Download or read it online for free here:

**Download link**

(4.1MB, PDF)

## Similar books

**Hopf Algebras in General and in Combinatorial Physics: a practical introduction**

by

**G.H.E. Duchamp, et al.**-

**arXiv**

This tutorial is intended to give an accessible introduction to Hopf algebras. The mathematical context is that of representation theory, and we also illustrate the structures with examples taken from combinatorics and quantum physics.

(

**5798**views)

**The Algebra of Invariants**

by

**J.H. Grace, A. Young**-

**Cambridge, University Press**

Invariant theory is a subject within abstract algebra that studies polynomial functions which do not change under transformations from a linear group. This book provides an English introduction to the symbolical method in the theory of Invariants.

(

**6732**views)

**A Treatise on the Theory of Invariants**

by

**Oliver E. Glenn**-

**Project Gutenberg**

The object of this book is to present in a volume of medium size the fundamental principles and processes and a few of the multitudinous applications of invariant theory, with emphasis upon both the nonsymbolical and the symbolical method.

(

**7402**views)

**An introduction to Noncommutative Projective Geometry**

by

**D. Rogalski**-

**arXiv**

These lecture notes are an expanded version of the author's lectures at a graduate workshop. The main topics discussed are Artin-Schelter regular algebras, point modules, and the noncommutative projective scheme associated to a graded algebra.

(

**5343**views)