**The Theory Of Integration**

by L. C. Young

**Publisher**: Cambridge University Press 1927**Number of pages**: 69

**Description**:

In writing this book, I have tried above all to simplify the work of the student. On the one hand, practically no knowledge is assumed (merely what concerns existence of real numbers ,and their symbolism); on the other hand, the ideas of Cauchy, Riemann, Darboux, Weierstrass, familiar to the reader who is acquainted with the elementary theory, are used as much as possible.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Notes on Measure and Integration**

by

**John Franks**-

**arXiv**

My intent is to introduce the Lebesgue integral in a quick, and hopefully painless, way and then go on to investigate the standard convergence theorems and a brief introduction to the Hilbert space of L2 functions on the interval.

(

**7159**views)

**Lectures on Lipschitz Analysis**

by

**Juha Heinonen**

In these lectures, we concentrate on the theory of Lipschitz functions in Euclidean spaces. From the table of contents: Introduction; Extension; Differentiability; Sobolev spaces; Whitney flat forms; Locally standard Lipschitz structures.

(

**10676**views)

**A Course of Pure Mathematics**

by

**G.H. Hardy**-

**Cambridge University Press**

This classic book has inspired successive generations of budding mathematicians at the beginning of their undergraduate courses. Hardy explains the fundamental ideas of the differential and integral calculus, and the properties of infinite series.

(

**11857**views)

**An Introductory Single Variable Real Analysis**

by

**Marcel B. Finan**-

**Arkansas Tech University**

The text is designed for an introductory course in real analysis suitable to upper sophomore or junior level students who already had the calculus sequel and a course in discrete mathematics. The content is considered a moderate level of difficulty.

(

**11961**views)