Logo

Category Theory in Context by Emily Riehl

Large book cover: Category Theory in Context

Category Theory in Context
by

Publisher: Dover Publications
Number of pages: 258

Description:
This concise, original text for a one-semester introduction to the subject is derived from courses that author Emily Riehl taught at Harvard and Johns Hopkins Universities. The treatment introduces the essential concepts of category theory: categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads, Kan extensions, and other topics.

Home page url

Download or read it online for free here:
Download link
(1.3MB, PDF)

Similar books

Book cover: Basic Concepts of Enriched Category TheoryBasic Concepts of Enriched Category Theory
by - Cambridge University Press
The book presents a selfcontained account of basic category theory, assuming as prior knowledge only the most elementary categorical concepts. It is designed to supply a connected account of the theory, or at least of a substantial part of it.
(8991 views)
Book cover: Seven Sketches in Compositionality: An Invitation to Applied Category TheorySeven Sketches in Compositionality: An Invitation to Applied Category Theory
by - arXiv.org
This book is an invitation to discover advanced topics in category theory through concrete, real-world examples. The tour takes place over seven sketches, such as databases, electric circuits, etc, with the exploration of a categorical structure.
(1539 views)
Book cover: Category TheoryCategory Theory
- Wikibooks
This book is an introduction to category theory, written for those who have some understanding of one or more branches of abstract mathematics, such as group theory, analysis or topology. It contains examples drawn from various branches of math.
(7733 views)
Book cover: Higher Topos TheoryHigher Topos Theory
by - Princeton University Press
Jacob Lurie presents the foundations of higher category theory, using the language of weak Kan complexes, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language.
(7604 views)