**Progress in Commutative Algebra 2: Closures, Finiteness and Factorization**

by Christopher Francisco, et al.

**Publisher**: De Gruyter Open 2012**ISBN-13**: 9783110278606**Number of pages**: 315

**Description**:

This volume contains surveys on aspects of closure operations, finiteness conditions and factorization. Closure operations on ideals and modules are a bridge between noetherian and nonnoetherian commutative algebra. It contains a nice guide to closure operations by Epstein, but also contains an article on test ideals by Schwede and Tucker and one by Enescu which discusses the action of the Frobenius on finite dimensional vector spaces both of which are related to tight closure.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**A Quick Review of Commutative Algebra**

by

**Sudhir R. Ghorpade**-

**Indian Institute of Technology, Bombay**

These notes give a rapid review of the rudiments of classical commutative algebra. Some of the main results whose proofs are outlined here are: Hilbert basis theorem, primary decomposition of ideals in noetherian rings, Krull intersection theorem.

(

**6625**views)

**Theory and Applications of Lattice Point Methods for Binomial Ideals**

by

**Ezra Miller**-

**arXiv**

This is a survey of lattice point methods for binomial ideals. It is aimed at students and researchers in algebra; it includes many examples, open problems, and elementary introductions to the motivations and background from outside of algebra.

(

**5835**views)

**Introduction to Commutative Algebra**

by

**Thomas J. Haines**-

**University of Maryland**

Notes for an introductory course on commutative algebra. Algebraic geometry uses commutative algebraic as its 'local machinery'. The goal of these lectures is to study commutative algebra and some topics in algebraic geometry in a parallel manner.

(

**6240**views)

**A Course In Commutative Algebra**

by

**Robert B. Ash**-

**University of Illinois**

This is a text for a basic course in commutative algebra, it should be accessible to those who have studied algebra at the beginning graduate level. The book should help the student reach an advanced level as quickly and efficiently as possible.

(

**13431**views)