The Theory of Lie Derivatives and Its Applications
by Kentaro Yano
Publisher: North Holland Publishing Co. 1955
Number of pages: 321
Description:
This is an advanced treatment of topics in differential geometry. The topics include: Spaces with a non-vanishing curvature tensor that admit a group of automorphisms of the maximum order; Groups of transformations in generalized spaces; The study of global properties of the groups of motions in a compact orientable Riemannian space; Lie derivatives in an almost complex space.
Download or read it online for free here:
Download link
(multiple formats)
Similar books
Notes on the Atiyah-Singer Index Theorem
by Liviu I. Nicolaescu - University of Notre Dame
This is arguably one of the deepest and most beautiful results in modern geometry, and it is surely a must know for any geometer / topologist. It has to do with elliptic partial differential operators on a compact manifold.
(11338 views)
by Liviu I. Nicolaescu - University of Notre Dame
This is arguably one of the deepest and most beautiful results in modern geometry, and it is surely a must know for any geometer / topologist. It has to do with elliptic partial differential operators on a compact manifold.
(11338 views)
Triangles, Rotation, a Theorem and the Jackpot
by Dave Auckly - arXiv
This paper introduced undergraduates to the Atiyah-Singer index theorem. It includes a statement of the theorem, an outline of the easy part of the heat equation proof. It includes counting lattice points and knot concordance as applications.
(9213 views)
by Dave Auckly - arXiv
This paper introduced undergraduates to the Atiyah-Singer index theorem. It includes a statement of the theorem, an outline of the easy part of the heat equation proof. It includes counting lattice points and knot concordance as applications.
(9213 views)
Cusps of Gauss Mappings
by Thomas Banchoff, Terence Gaffney, Clint McCrory - Pitman Advanced Pub. Program
Gauss mappings of plane curves, Gauss mappings of surfaces, characterizations of Gaussian cusps, singularities of families of mappings, projections to lines, focal and parallel surfaces, projections to planes, singularities and extrinsic geometry.
(16172 views)
by Thomas Banchoff, Terence Gaffney, Clint McCrory - Pitman Advanced Pub. Program
Gauss mappings of plane curves, Gauss mappings of surfaces, characterizations of Gaussian cusps, singularities of families of mappings, projections to lines, focal and parallel surfaces, projections to planes, singularities and extrinsic geometry.
(16172 views)
Functional Differential Geometry
by Gerald Jay Sussman, Jack Wisdom - MIT
Differential geometry is deceptively simple. It is surprisingly easy to get the right answer with informal symbol manipulation. We use computer programs to communicate a precise understanding of the computations in differential geometry.
(12019 views)
by Gerald Jay Sussman, Jack Wisdom - MIT
Differential geometry is deceptively simple. It is surprisingly easy to get the right answer with informal symbol manipulation. We use computer programs to communicate a precise understanding of the computations in differential geometry.
(12019 views)