Logo

Treatise on Differential Geometry and its role in Relativity Theory

Small book cover: Treatise on Differential Geometry and its role in Relativity Theory

Treatise on Differential Geometry and its role in Relativity Theory
by

Publisher: arXiv.org
Number of pages: 259

Description:
These notes will be helpful to undergraduate and postgraduate students in theoretical physics and in applied mathematics. Modern terminology in differential geometry has been discussed in the book with the motivation of geometrical or pictorial way of thinking. The book shows the wide applicability of differential geometry to relativity theory.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: Riemann Surfaces, Dynamics and GeometryRiemann Surfaces, Dynamics and Geometry
by - Harvard University
This course will concern the interaction between: hyperbolic geometry in dimensions 2 and 3, the dynamics of iterated rational maps, and the theory of Riemann surfaces and their deformations. Intended for advanced graduate students.
(13165 views)
Book cover: Lectures notes on compact Riemann surfacesLectures notes on compact Riemann surfaces
by - arXiv.org
An introduction to the geometry of compact Riemann surfaces. Contents: Riemann surfaces; Functions and forms on Riemann surfaces; Abel map, Jacobian and Theta function; Riemann-Roch; Moduli spaces; Eigenvector bundles and solutions of Lax equations.
(4176 views)
Book cover: A Course in Riemannian GeometryA Course in Riemannian Geometry
by - Trinity College, Dublin
From the table of contents: Smooth Manifolds; Tangent Spaces; Affine Connections on Smooth Manifolds; Riemannian Manifolds; Geometry of Surfaces in R3; Geodesics in Riemannian Manifolds; Complete Riemannian Manifolds; Jacobi Fields.
(10414 views)
Book cover: Riemannian GeometryRiemannian Geometry
by
Based on the lecture notes on differential geometry. From the contents: Differentiable manifolds, a brief review; Riemannian metrics; Connections; Geodesics; Curvature; Jacobi fields; Curvature and topology; Comparison geometry; The sphere theorem.
(7379 views)