**Non-Uniform Random Variate Generation**

by Luc Devroye

**Publisher**: Springer 1986**ISBN/ASIN**: 0387963057**ISBN-13**: 9780387963051**Number of pages**: 843

**Description**:

This text is about one small field on the crossroads of statistics, operations research and computer science. Statisticians need random number generators to test and compare estimators before using them in real life. In operations research, random numbers are a key component in large scale simulations. Computer scientists need randomness in program testing, game playing and comparisons of algorithms.

Download or read it online for free here:

**Download link**

(37MB, ZIP/PDF)

Download mirrors:**Mirror 1**

## Similar books

**Random Matrix Models and Their Applications**

by

**Pavel Bleher, Alexander Its**-

**Cambridge University Press**

The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems.

(

**12921**views)

**Advanced Data Analysis from an Elementary Point of View**

by

**Cosma Rohilla Shalizi**-

**Cambridge University Press**

This is a draft textbook on data analysis methods, intended for a one-semester course for advance undergraduate students who have already taken classes in probability, mathematical statistics, and linear regression. It began as the lecture notes.

(

**6654**views)

**Probability and Statistics Cookbook**

by

**Matthias Vallentin**

The cookbook contains a succinct representation of various topics in probability theory and statistics. It provides a comprehensive reference reduced to the mathematical essence, rather than aiming for elaborate explanations.

(

**15482**views)

**Probability, Statistics and Stochastic Processes**

by

**Cosma Rohilla Shalizi**

Contents: Probability (Probability Calculus, Random Variables, Discrete and Continuous Distributions); Statistics (Handling of Data, Sampling, Estimation, Hypothesis Testing); Stochastic Processes (Markov Processes, Continuous-Time Processes).

(

**8453**views)