Logo

Introduction to Groups, Invariants and Particles

Small book cover: Introduction to Groups, Invariants and Particles

Introduction to Groups, Invariants and Particles
by

Publisher: Orange Grove Texts Plus
ISBN/ASIN: 1616100427
ISBN-13: 9781616100421
Number of pages: 162

Description:
The book places the subject matter in its historical context with discussions of Galois groups, algebraic invariants, Lie groups and differential equations, presented at a level that is not the standard fare for students majoring in the Physical Sciences. A sound mathematical basis is thereby provided for the study of special unitary groups and their applications to Particle Physics.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Groupoids and Smarandache GroupoidsGroupoids and Smarandache Groupoids
by - American Research Press
This book by Dr. W. B. Vasantha aims to give a systematic development of the basic non-associative algebraic structures viz. Smarandache groupoids. Smarandache groupoids exhibits simultaneously the properties of a semigroup and a groupoid.
(6068 views)
Book cover: Lectures on Algebraic GroupsLectures on Algebraic Groups
by - University of Oregon
Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.
(7384 views)
Book cover: Finite Group SchemesFinite Group Schemes
by - ETH Zurich
The aim of the lecture course is the classification of finite commutative group schemes over a perfect field of characteristic p, using the classical approach by contravariant Dieudonne theory. The theory is developed from scratch.
(5622 views)
Book cover: Algebraic Groups, Lie Groups, and their Arithmetic SubgroupsAlgebraic Groups, Lie Groups, and their Arithmetic Subgroups
by
This work is a modern exposition of the theory of algebraic group schemes, Lie groups, and their arithmetic subgroups. Algebraic groups are groups defined by polynomials. Those in this book can all be realized as groups of matrices.
(7778 views)