**Introduction to Groups, Invariants and Particles**

by Frank W. K. Firk

**Publisher**: Orange Grove Texts Plus 2000**ISBN/ASIN**: 1616100427**ISBN-13**: 9781616100421**Number of pages**: 162

**Description**:

The book places the subject matter in its historical context with discussions of Galois groups, algebraic invariants, Lie groups and differential equations, presented at a level that is not the standard fare for students majoring in the Physical Sciences. A sound mathematical basis is thereby provided for the study of special unitary groups and their applications to Particle Physics.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Notes on Categories and Groupoids**

by

**P. J. Higgins**-

**Van Nostrand Reinhold**

A self-contained account of the elementary theory of groupoids and some of its uses in group theory and topology. Category theory appears as a secondary topic whenever it is relevant to the main issue, and its treatment is by no means systematic.

(

**11268**views)

**Lectures on Semi-group Theory and its Application to Cauchy's Problem in Partial Differential Equations**

by

**K. Yosida**-

**Tata Institute of Fundamental Research**

In these lectures, we shall be concerned with the differentiability and the representation of one-parameter semi-groups of bounded linear operators on a Banach space and their applications to the initial value problem for differential equations.

(

**8479**views)

**Geometry and Group Theory**

by

**Christopher Pope**-

**Texas A&M University**

Lecture notes on Geometry and Group Theory. In this course, we develop the basic notions of Manifolds and Geometry, with applications in physics, and also we develop the basic notions of the theory of Lie Groups, and their applications in physics.

(

**14524**views)

**Smarandache Semigroups**

by

**W. B. Vasantha Kandasamy**-

**American Research Press**

The Smarandache semigroups exhibit properties of both a group and a semigroup simultaneously. This book assumes the reader to have a good background on group theory; we give some recollection about groups and some of its properties for reference.

(

**6750**views)