**Introduction to Groups, Invariants and Particles**

by Frank W. K. Firk

**Publisher**: Orange Grove Texts Plus 2000**ISBN/ASIN**: 1616100427**ISBN-13**: 9781616100421**Number of pages**: 162

**Description**:

The book places the subject matter in its historical context with discussions of Galois groups, algebraic invariants, Lie groups and differential equations, presented at a level that is not the standard fare for students majoring in the Physical Sciences. A sound mathematical basis is thereby provided for the study of special unitary groups and their applications to Particle Physics.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Groupoids and Smarandache Groupoids**

by

**W. B. Vasantha Kandasamy**-

**American Research Press**

This book by Dr. W. B. Vasantha aims to give a systematic development of the basic non-associative algebraic structures viz. Smarandache groupoids. Smarandache groupoids exhibits simultaneously the properties of a semigroup and a groupoid.

(

**6068**views)

**Lectures on Algebraic Groups**

by

**Alexander Kleshchev**-

**University of Oregon**

Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.

(

**7384**views)

**Finite Group Schemes**

by

**Richard Pink**-

**ETH Zurich**

The aim of the lecture course is the classification of finite commutative group schemes over a perfect field of characteristic p, using the classical approach by contravariant Dieudonne theory. The theory is developed from scratch.

(

**5622**views)

**Algebraic Groups, Lie Groups, and their Arithmetic Subgroups**

by

**J. S. Milne**

This work is a modern exposition of the theory of algebraic group schemes, Lie groups, and their arithmetic subgroups. Algebraic groups are groups defined by polynomials. Those in this book can all be realized as groups of matrices.

(

**7778**views)