**Inverse Problem Theory and Methods for Model Parameter Estimation**

by Albert Tarantola

**Publisher**: SIAM 2004**ISBN/ASIN**: 0898715725**ISBN-13**: 9780898715729**Number of pages**: 358

**Description**:

The first part of the book deals exclusively with discrete inverse problems with a finite number of parameters, while the second part of the book deals with general inverse problems. The book is directed to all scientists, including applied mathematicians, facing the problem of quantitative interpretation of experimental data in fields such as physics, chemistry, biology, image processing, and information sciences. Considerable effort has been made so that this book can serve either as a reference manual for researchers or as a textbook in a course for undergraduate or graduate students.

Download or read it online for free here:

**Download link**

(20MB, PDF)

## Similar books

**Probability and Mathematical Statistics**

by

**Prasanna Sahoo**-

**University of Louisville**

This book is an introduction to probability and mathematical statistics intended for students already having some elementary mathematical background. It is intended for a one-year junior or senior level undergraduate or beginning graduate course.

(

**2261**views)

**Lectures on Probability, Statistics and Econometrics**

by

**Marco Taboga**-

**statlect.com**

This e-book is organized as a website that provides access to a series of lectures on fundamentals of probability, statistics and econometrics, as well as to a number of exercises on the same topics. The level is intermediate.

(

**7964**views)

**Lectures on Noise Sensitivity and Percolation**

by

**Christophe Garban, Jeffrey E. Steif**-

**arXiv**

The goal of this set of lectures is to combine two seemingly unrelated topics: (1) The study of Boolean functions, a field particularly active in computer science; (2) Some models in statistical physics, mostly percolation.

(

**6532**views)

**Basic Data Analysis and More: A Guided Tour Using Python**

by

**O. Melchert**-

**arXiv**

In these lecture notes, a selection of frequently required statistical tools will be introduced and illustrated. They allow to post-process data that stem from, e.g., large-scale numerical simulations (aka sequence of random experiments).

(

**8207**views)