Logo

A Gentle Introduction to Category Theory: the calculational approach

A Gentle Introduction to Category Theory: the calculational approach
by

Publisher: University of Twente
Number of pages: 80

Description:
In these notes we present the important notions from category theory. The intention is to provide a fairly good skill in manipulating with those concepts formally. This text differs from most other introductions to category theory in the calculational style of the proofs, the restriction to applications within algorithmics, and the omission of many additional concepts and facts that I consider not helpful in a first introduction to category theory.

Home page url

Download or read it online for free here:
Download link
(390KB, PDF)

Similar books

Book cover: Higher Topos TheoryHigher Topos Theory
by - Princeton University Press
Jacob Lurie presents the foundations of higher category theory, using the language of weak Kan complexes, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language.
(7425 views)
Book cover: Mixed MotivesMixed Motives
by - American Mathematical Society
This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry.
(10075 views)
Book cover: Category Theory and Functional ProgrammingCategory Theory and Functional Programming
by - University of St. Andrews
An introduction to category theory that ties into Haskell and functional programming as a source of applications. Topics: definition of categories, special objects and morphisms, functors, natural transformation, (co-)limits and special cases, etc.
(7790 views)
Book cover: Higher AlgebraHigher Algebra
by - Harvard University
Contents: Stable infinite-Categories; infinite-Operads; Algebras and Modules over infinte-Operads; Associative Algebras and Their Modules; Little Cubes and Factorizable Sheaves; Algebraic Structures on infinite-Categories; and more.
(10569 views)