**A Gentle Introduction to Category Theory: the calculational approach**

by Maarten M. Fokkinga

**Publisher**: University of Twente 1994**Number of pages**: 80

**Description**:

In these notes we present the important notions from category theory. The intention is to provide a fairly good skill in manipulating with those concepts formally. This text differs from most other introductions to category theory in the calculational style of the proofs, the restriction to applications within algorithmics, and the omission of many additional concepts and facts that I consider not helpful in a first introduction to category theory.

Download or read it online for free here:

**Download link**

(390KB, PDF)

## Similar books

**Higher Topos Theory**

by

**Jacob Lurie**-

**Princeton University Press**

Jacob Lurie presents the foundations of higher category theory, using the language of weak Kan complexes, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language.

(

**7425**views)

**Mixed Motives**

by

**Marc Levine**-

**American Mathematical Society**

This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry.

(

**10075**views)

**Category Theory and Functional Programming**

by

**Mikael Vejdemo-Johansson**-

**University of St. Andrews**

An introduction to category theory that ties into Haskell and functional programming as a source of applications. Topics: definition of categories, special objects and morphisms, functors, natural transformation, (co-)limits and special cases, etc.

(

**7790**views)

**Higher Algebra**

by

**Jacob Lurie**-

**Harvard University**

Contents: Stable infinite-Categories; infinite-Operads; Algebras and Modules over infinte-Operads; Associative Algebras and Their Modules; Little Cubes and Factorizable Sheaves; Algebraic Structures on infinite-Categories; and more.

(

**10569**views)