Interactive Real Analysis by Bert G. Wachsmuth

Small book cover: Interactive Real Analysis

Interactive Real Analysis

Publisher: Seton Hall University

Interactive Real Analysis is an online, interactive textbook for Real Analysis or Advanced Calculus in one real variable. It deals with sets, sequences, series, continuity, differentiability, integrability (Riemann and Lebesgue), topology, power series, and more. The text was designed for use by upper level undergraduate math majors.

Home page url

Download or read it online for free here:
Read online
(online html)

Similar books

Book cover: Introduction to Mathematical AnalysisIntroduction to Mathematical Analysis
by - Portland State University Library
We provide students with a strong foundation in mathematical analysis. Students should be familiar with most of the concepts presented here after completing the calculus sequence. However, these concepts will be reinforced through rigorous proofs.
Book cover: Mathematical Analysis IIMathematical Analysis II
by - The TrilliaGroup
This book follows the release of the author's Mathematical Analysis I and completes the material on Real Analysis that is the foundation for later courses. The text is appropriate for any second course in real analysis or mathematical analysis.
Book cover: Real Variables: With Basic Metric Space TopologyReal Variables: With Basic Metric Space Topology
by - Institute of Electrical & Electronics Engineering
A text for a first course in real variables for students of engineering, physics, and economics, who need to know real analysis in order to cope with the professional literature. The subject matter is fundamental for more advanced mathematical work.
Book cover: Irrational Numbers and Their Representation by Sequences and SeriesIrrational Numbers and Their Representation by Sequences and Series
by - J. Wiley & sons
This book is intended to explain the nature of irrational numbers, and those parts of Algebra which depend on the theory of limits. We have endeavored to show how the fundamental operations are to be performed in the case of irrational numbers.