**An Invitation to General Algebra and Universal Constructions**

by George M. Bergman

**Publisher**: Henry Helson 1998**ISBN/ASIN**: 0965521141**ISBN-13**: 9780965521147**Number of pages**: 398

**Description**:

From the contents: Free groups; A Cook's tour of other universal constructions; Ordered sets, induction, and the Axiom of Choice; Lattices, closure operators, and Galois connections; Categories and functors; Universal constructions in category-theoretic terms; Varieties of algebras; Algebra and coalgebra objects in categories, and functors having adjoints.

Download or read it online for free here:

**Download link**

(multiple PS files)

## Similar books

**Smarandache Loops**

by

**W. B. Vasantha Kandasamy**-

**American Research Press**

The purpose of this book entirely lies in the study, introduction and examination of the Smarandache loops. We expect the reader to have a good background in algebra and more specifically a strong foundation in loops and number theory.

(

**6596**views)

**Set Theoretic Approach to Algebraic Structures in Mathematics**

by

**W. B. Vasantha Kandasamy, Florentin Smarandache**-

**Educational Publisher**

This book brings out how sets in algebraic structures can be used to construct the most generalized algebraic structures, like set linear algebra / vector space, set ideals in groups and rings and semigroups, and topological set vector spaces.

(

**6795**views)

**Lectures On Unique Factorization Domains**

by

**P. Samuel**-

**Tata Institute Of Fundamental Research**

In this book we shall study some elementary properties of Krull rings and factorial rings, regular rings (local and factorial), and descent methods (Galoisian descent, the Purely inseparable case, formulae concerning derivations).

(

**6318**views)

**An Introduction to Nonassociative Algebras**

by

**Richard D. Schafer**-

**Project Gutenberg**

Concise study presents in a short space some of the important ideas and results in the theory of nonassociative algebras, with particular emphasis on alternative and (commutative) Jordan algebras. Written as an introduction for graduate students.

(

**9665**views)