Logo

Super Linear Algebra by W. B. V. Kandasamy, F. Smarandache

Large book cover: Super Linear Algebra

Super Linear Algebra
by

Publisher: InfoQuest
ISBN/ASIN: 1599730650
ISBN-13: 9781599730653
Number of pages: 293

Description:
In this book, the authors introduce the notion of Super linear algebra and super vector spaces using the definition of super matrices defined by Horst (1963). This book expects the readers to be well-versed in linear algebra. Many theorems on super linear algebra and its properties are proved. Some theorems are left as exercises for the reader.

Home page url

Download or read it online for free here:
Download link
(3.7MB, PDF)

Similar books

Book cover: Differential Equations and Linear AlgebraDifferential Equations and Linear Algebra
by - Heriot-Watt University
From the table of contents: Linear second order ODEs; Homogeneous linear ODEs; Non-homogeneous linear ODEs; Laplace transforms; Linear algebraic equations; Matrix Equations; Linear algebraic eigenvalue problems; Systems of differential equations.
(1540 views)
Book cover: Numerical Methods for Large Eigenvalue ProblemsNumerical Methods for Large Eigenvalue Problems
by - SIAM
This book discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods for solving matrix eigenvalue problems that arise in various engineering applications.
(7917 views)
Book cover: Linear Algebra: Theorems and ApplicationsLinear Algebra: Theorems and Applications
by - InTech
This book contains selected topics in linear algebra, which represent the recent contributions in the field. It includes a range of theorems and applications in different branches of linear algebra, such as linear systems, matrices, operators, etc.
(4560 views)
Book cover: Linear AlgebraLinear Algebra
by - UCLA
This book covers the aspects of linear algebra that are included in most advanced undergraduate texts: complex vectors spaces, complex inner products, spectral theorem for normal operators, dual spaces, quotient spaces, the minimal polynomial, etc.
(12001 views)