**Introduction to the Theory of Infinite-Dimensional Dissipative Systems**

by Constantin I. Chueshov

**Publisher**: ACTA 2002**ISBN/ASIN**: 9667021645**Number of pages**: 419

**Description**:

This book is an exhaustive introduction to the main ideas of infinite-dimensional dissipative dynamical systems. The author outlines a variety of interlaced tools applied in the study of nonlinear dynamical phenomena in distributed systems. The results presented have direct applications to many developing areas of physics, mechanical engineering and biology.

Download or read it online for free here:

**Download link**

(2.5MB, PDF)

## Similar books

**Singularities of Transition Processes in Dynamical Systems**

by

**Alexander N. Gorban**-

**American Mathematical Society**

This monograph presents a systematic analysis of the singularities in the transition processes for dynamical systems. We study general dynamical systems, with dependence on a parameter, and construct relaxation times that depend on three variables.

(

**4756**views)

**Definitions, Solved and Unsolved Problems, Conjectures, and Theorems in Number Theory and Geometry**

by

**Florentin Smarandache**-

**Amer Research Pr**

A collection of definitions, questions, and theorems such as Smarandache type conjectures, problems, numerical bases, T-numbers, progressions, series, functions, Non-Euclidean geometries, paradoxes, linguistic tautologies, and more.

(

**11879**views)

**Geometrical Theory of Dynamical Systems**

by

**Nils Berglund**-

**arXiv**

This text is a slightly edited version of lecture notes for a course to undergraduate Mathematics and Physics students. Contents: Examples of Dynamical Systems; Stationary and Periodic Solutions; Local Bifurcations; Introduction to Chaotic Dynamics.

(

**5833**views)

**Computable Integrability**

by

**Alexey Shabat, Elena Kartashova**-

**arXiv**

A preliminary version of the textbook on integrable systems. Contents: General notions and ideas; Riccati equation; Factorization of linear operators; Commutativity of linear operators; Integrability of non-linear PDEs; Burgers-type equations.

(

**4376**views)