**Homogeneous Spaces and Equivariant Embeddings**

by Dmitri A. Timashev

**Publisher**: arXiv 2006**Number of pages**: 250

**Description**:

This is a monograph on homogeneous spaces of algebraic groups and their equivariant embeddings. Some results are supplied with proofs, while the other are cited with references to the original papers. Starting with basic properties of algebraic homogeneous spaces, the author focuses on homogeneous spaces of reductive groups and introduces two invariants: complexity and rank. He considers the Luna-Vust theory of equivariant embeddings, paying attention to the case of complexity not greater than one.

Download or read it online for free here:

**Download link**

(2.3MB, PDF)

## Similar books

**Lectures on Algebraic Groups**

by

**Alexander Kleshchev**-

**University of Oregon**

Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.

(

**13489**views)

**Determinantal Rings**

by

**Winfried Bruns, Udo Vetter**-

**Springer**

Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. The book gives a coherent treatment of the structure of determinantal rings. The approach is via the theory of algebras with straightening law.

(

**11670**views)

**Abel's Theorem and the Allied Theory**

by

**H.F. Baker**-

**Cambridge University Press**

This classic book covers the whole of algebraic geometry and associated theories. Baker discusses the subject in terms of transcendental functions, and theta functions in particular. Many of the ideas put forward are of continuing relevance today.

(

**8152**views)

**Modular Functions and Modular Forms**

by

**J. S. Milne**

This is an introduction to the arithmetic theory of modular functions and modular forms, with an emphasis on the geometry. Prerequisites are the algebra and complex analysis usually covered in advanced undergraduate or first-year graduate courses.

(

**13122**views)