Homogeneous Spaces and Equivariant Embeddings
by Dmitri A. Timashev
Publisher: arXiv 2006
Number of pages: 250
Description:
This is a monograph on homogeneous spaces of algebraic groups and their equivariant embeddings. Some results are supplied with proofs, while the other are cited with references to the original papers. Starting with basic properties of algebraic homogeneous spaces, the author focuses on homogeneous spaces of reductive groups and introduces two invariants: complexity and rank. He considers the Luna-Vust theory of equivariant embeddings, paying attention to the case of complexity not greater than one.
Download or read it online for free here:
Download link
(2.3MB, PDF)
Similar books

by Herbert Clemens, János Kollár - Cambridge University Press
The 1992/93 year at the Mathematical Sciences Research Institute was devoted to Complex Algebraic Geometry. This volume collects articles that arose from this event, which took place at a time when algebraic geometry was undergoing a major change.
(13003 views)

by Winfried Bruns, Udo Vetter - Springer
Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. The book gives a coherent treatment of the structure of determinantal rings. The approach is via the theory of algebras with straightening law.
(10184 views)

by H. Maass - Tata Institute of Fundamental Research
Contents: Modular Group of Degree n; Symplectic group of degree n; Reduction Theory of Positive Definite Quadratic Forms; Fundamental Domain of the Modular Group of Degree n; Modular Forms of Degree n; Algebraic dependence of modular forms; etc.
(10122 views)

by Robin Hartshorne - Springer
These notes are an enlarged version of a three-month course of lectures. Their style is informal. I hope they will serve as an introduction to some current research topics, for students who have had a one year course in modern algebraic geometry.
(6837 views)