Logo

Mathematical Analysis I by Elias Zakon

Small book cover: Mathematical Analysis I

Mathematical Analysis I
by

Publisher: The Trillia Group
ISBN/ASIN: 193170502X
Number of pages: 367

Description:
This book carefully leads the student through the basic topics of real analysis. Topics include metric spaces, open and closed sets, convergent sequences, function limits and continuity, compact sets, sequences and series of functions, power series, differentiation and integration, Taylor's theorem, total variation, rectifiable arcs, and sufficient conditions of integrability. Well over 500 exercises assist students through the material.

Home page url

Download or read it online for free here:
Download link
(2.5MB, PDF)

Similar books

Book cover: Theory of Functions of a Real VariableTheory of Functions of a Real Variable
by
The topology of metric spaces, Hilbert spaces and compact operators, the Fourier transform, measure theory, the Lebesgue integral, the Daniell integral, Wiener measure, Brownian motion and white noise, Haar measure, Banach algebras, etc.
(31007 views)
Book cover: The General Theory of Dirichlet's SeriesThe General Theory of Dirichlet's Series
by - Cambridge University Press
This classic work explains the theory and formulas behind Dirichlet's series and offers the first systematic account of Riesz's theory of the summation of series by typical means. Its authors rank among the most distinguished mathematicians ...
(2950 views)
Book cover: Mathematical Analysis IIMathematical Analysis II
by - The TrilliaGroup
This book follows the release of the author's Mathematical Analysis I and completes the material on Real Analysis that is the foundation for later courses. The text is appropriate for any second course in real analysis or mathematical analysis.
(12976 views)
Book cover: Introduction to Real AnalysisIntroduction to Real Analysis
by - University of Louisville
From the table of contents: Basic Ideas (Sets, Functions and Relations, Cardinality); The Real Numbers; Sequences; Series; The Topology of R; Limits of Functions; Differentiation; Integration; Sequences of Functions; Fourier Series.
(4724 views)