**Introduction to Physics for Mathematicians**

by Igor Dolgachev

1996**Number of pages**: 285

**Description**:

A set of class notes in Introduction to Physics taken by math graduate students. The goal of this course was to introduce some basic concepts from theoretical physics which play so fundamental role in a recent intermarriage between physics and pure mathematics. No physical background was assumed.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Mathematical Physics: Problems and Solutions**

by

**G. S. Beloglazov, et al.**-

**Samara University Press**

The present Proceedings is intended to be used by the students of physical and mechanical-mathematical departments of the universities, who are interested in acquiring a deeper knowledge of the methods of mathematical and theoretical physics.

(

**15419**views)

**The Place of Partial Differential Equations in Mathematical Physics**

by

**Ganesh Prasad**-

**Patna University**

The reason for my choosing the partial differential equations as the subject for these lectures is my wish to inspire in my audience a love for Mathematics. I give a brief historical account of the application of Mathematics to natural phenomena.

(

**6868**views)

**An Introduction to Topos Physics**

by

**Marios Tsatsos**-

**arXiv**

The basic notion of how topoi can be utilized in physics is presented here. Topos and category theory serve as valuable tools which extend our ordinary set-theoretical conceptions, can give rise to new descriptions of quantum physics.

(

**10355**views)

**A Window into Zeta and Modular Physics**

by

**Klaus Kirsten, Floyd L. Williams**-

**Cambridge University Press**

This book provides an introduction, with applications, to three interconnected mathematical topics: zeta functions in their rich variety; modular forms; vertex operator algebras. Applications of the material to physics are presented.

(

**10820**views)