Generic Polynomials: Constructive Aspects of the Inverse Galois Problem
by C. U. Jensen, A. Ledet, N. Yui
Publisher: Cambridge University Press 2002
ISBN/ASIN: 0521819989
ISBN-13: 9780521819985
Number of pages: 268
Description:
This book describes a constructive approach to the Inverse Galois problem. The main theme is an exposition of a family of "generic" polynomials for certain finite groups, which give all Galois extensions having the required group as their Galois group. The existence of such generic polynomials is discussed, and where they do exist, a detailed treatment of their construction is given. The book also introduces the notion of "generic dimension" to address the problem of the smallest number of parameters required by a generic polynomial.
Download or read it online for free here:
Download link
(1.8MB, PDF)
Similar books
by Emil Artin - University of Notre Dame
The book deals with linear algebra, including fields, vector spaces, homogeneous linear equations, and determinants, extension fields, polynomials, algebraic elements, splitting fields, group characters, normal extensions, roots of unity, and more.
(6173 views)
by K.G. Ramanathan - Tata Institute of Fundamental Research
These lecture notes on Field theory are aimed at providing the beginner with an introduction to algebraic extensions, algebraic function fields, formally real fields and valuated fields. We assume a familiarity with group theory and vector spaces.
(11133 views)
by Jerry Shurman - Wiley-Interscience
The text demonstrates the use of general concepts by applying theorems from various areas in the context of one problem -- solving the quintic. This book helps students to develop connections between the algebra, geometry, and analysis ...
(11170 views)
by J. S. Milne
Class field theory describes the abelian extensions of a local or global field in terms of the arithmetic of the field itself. These notes contain an exposition of abelian class field theory using the algebraic/cohomological approach.
(11728 views)