**Dynamical Systems and Chaos**

by Evans M. Harrell II

2000

**Description**:

These class notes are suitable for an introductory course on dynamical systems and chaos, taken by mathematicians, engineers, and physicists. This text concentrates on models rather than proofs in order to bring out the concepts of dynamics and chaos. Theorems are carefully stated, though only occasionally proved.

Download or read it online for free here:

**Read online**

(online html, RTF)

## Similar books

**Random Differential Equations in Scientific Computing**

by

**Tobias Neckel, Florian Rupp**-

**De Gruyter Open**

This book is a self-contained treatment of the analysis and numerics of random differential equations from a problem-centred point of view. An interdisciplinary approach is applied by considering both dynamical systems and scientific computing.

(

**2440**views)

**Hyperbolic Manifolds, Discrete Groups and Ergodic Theory**

by

**Curtis T. McMullen**-

**Harvard University**

Contents: Ergodic theory; Dynamics on hyperbolic surfaces; Orbit counting, equidistribution and arithmetic; Spectral theory; Mixing of unitary representations of SLnR; Amenability; The Laplacian; All unitary representations of PSL2(R); etc.

(

**5682**views)

**Dynamics, Ergodic Theory, and Geometry**

by

**Boris Hasselblatt**-

**Cambridge University Press**

This book contains articles in several areas of dynamical systems that have recently experienced substantial progress. Some of the major surveys focus on symplectic geometry; smooth rigidity; hyperbolic, parabolic, and symbolic dynamics; etc.

(

**13231**views)

**Perturbation Theory of Dynamical Systems**

by

**Nils Berglund**-

**arXiv**

These are lecture notes for undergraduate Mathematics and Physics students. They cover a few selected topics from perturbation theory at an introductory level: Bifurcations and Unfolding; Regular Perturbation Theory; Singular Perturbation Theory.

(

**4992**views)