**The Octonions**

by John C. Baez

**Publisher**: University of California 2001**Number of pages**: 56

**Description**:

The octonions are the largest of the four normed division algebras. While somewhat neglected due to their nonassociativity, they stand at the crossroads of many interesting fields of mathematics. Here we describe them and their relation to Clifford algebras and spinors, Bott periodicity, projective and Lorentzian geometry, Jordan algebras, and the exceptional Lie groups. We also touch upon their applications in quantum logic, special relativity and supersymmetry.

Download or read it online for free here:

**Download link**

(420KB, PDF)

## Similar books

**Smarandache Semirings, Semifields and Semivector Spaces**

by

**W. B. Vasantha Kandasamy**-

**American Research Press**

This is the first book on the Smarandache algebraic structures that have two binary operations. Semirings are algebraic structures with two binary operations enjoying several properties and it is the most generalized structure.

(

**8798**views)

**An Invitation to General Algebra and Universal Constructions**

by

**George M. Bergman**-

**Henry Helson**

From the contents: Free groups; Ordered sets, induction, and the Axiom of Choice; Lattices, closure operators, and Galois connections; Categories and functors; Universal constructions in category-theoretic terms; Varieties of algebras; etc.

(

**9778**views)

**Set Theoretic Approach to Algebraic Structures in Mathematics**

by

**W. B. Vasantha Kandasamy, Florentin Smarandache**-

**Educational Publisher**

This book brings out how sets in algebraic structures can be used to construct the most generalized algebraic structures, like set linear algebra / vector space, set ideals in groups and rings and semigroups, and topological set vector spaces.

(

**6704**views)

**The Construction and Study of Certain Important Algebras**

by

**Claude Chevalley**-

**The Mathematical Society Of Japan**

This is the reproduction of the beautiful lectures delivered by Professor C. Chevalley at the University of Tokyo in April-June 1954. Contents: Graded algebras; Tensor algebras; Clifford algebras; Some applications of exterior algebras.

(

**6044**views)