**The Octonions**

by John C. Baez

**Publisher**: University of California 2001**Number of pages**: 56

**Description**:

The octonions are the largest of the four normed division algebras. While somewhat neglected due to their nonassociativity, they stand at the crossroads of many interesting fields of mathematics. Here we describe them and their relation to Clifford algebras and spinors, Bott periodicity, projective and Lorentzian geometry, Jordan algebras, and the exceptional Lie groups. We also touch upon their applications in quantum logic, special relativity and supersymmetry.

Download or read it online for free here:

**Download link**

(420KB, PDF)

## Similar books

**Lectures on Quadratic Forms**

by

**C.L. Siegel**-

**Tata Institute of Fundamental Research**

From the table of contents: Vector groups and linear inequalities (Vector groups, Lattices, Characters, Diophantine approximations); Reduction of positive quadratic forms; Indefinite quadratic forms; Analytic theory of Indefinite quadratic forms.

(

**7468**views)

**New Directions in Hopf Algebras**

by

**S. Montgomery, H. Schneider**-

**Cambridge University Press**

Hopf algebras have important connections to quantum theory, Lie algebras, knot and braid theory, operator algebras, and other areas. The book gives a clear picture of the current trends, with a focus on what will be important in future research.

(

**8270**views)

**Universal Algebra for Computer Science**

by

**Eric G. Wagner**-

**Wagner Mathematics**

A text on universal algebra with a strong emphasis on applications and examples from computer science. The text introduces signatures, algebras, homomorphisms, initial algebras, free algebras, and illustrates them with interactive applications.

(

**11727**views)

**Graduate Algebra**

by

**Leonard Evens**-

**Northwestern University**

Contents: Groups; Group actions on sets; Normal series; Ring theory; Modules; Hom and tensor; Field theory; Galois theory; Applications of Galois theory; Infinite extensions; Categories; Multilinear algebra; More ring theory; Localization; etc.

(

**9573**views)