Guide to Mathematical Concepts of Quantum Theory

Guide to Mathematical Concepts of Quantum Theory

Publisher: arXiv
Number of pages: 188

Quantum Theory is one of the pillars of modern science developed over the last hundred years. In this review paper the authors introduce, step by step, the quantum theory understood as a mathematical model describing quantum experiments. The goal is to give a mathematically clear and self-containing explanation of the main concepts of the modern language of quantum theory.

Home page url

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: Lecture notes on C*-algebras, Hilbert C*-modules, and quantum mechanicsLecture notes on C*-algebras, Hilbert C*-modules, and quantum mechanics
by - arXiv
A graduate-level introduction to C*-algebras, Hilbert C*-modules, vector bundles, and induced representations of groups and C*-algebras, with applications to quantization theory, phase space localization, and configuration space localization.
Book cover: Quantum Theory, Groups and Representations: An IntroductionQuantum Theory, Groups and Representations: An Introduction
by - Columbia University
These notes cover the basics of quantum mechanics, from a point of view emphasizing the role of unitary representations of Lie groups in the foundations of the subject. The approach to this material is simultaneously rather advanced...
Book cover: Quantization and SemiclassicsQuantization and Semiclassics
by - arXiv
This text is aimed at graduate students in physics in mathematics and designed to give a comprehensive introduction to Weyl quantization and semiclassics via Egorov's theorem. An application of Weyl calculus to Born-Oppenheimer systems is discussed.
Book cover: Mathematical Foundations of Quantum MechanicsMathematical Foundations of Quantum Mechanics
by - arXiv
The author reviews the formulation of Quantum Mechanics, and quantum theories in general, from a mathematically advanced viewpoint, essentially based on the orthomodular lattice of elementary propositions, discussing some fundamental ideas ...