High-dimensional Knot Theory
by Andrew Ranicki
Publisher: Springer 1998
ISBN/ASIN: 3540633898
ISBN-13: 9783540633891
Number of pages: 693
Description:
This book is devoted entirely to high-dimensional knot theory. It actually has two aims: (1) to serve as an introduction to high-dimensional knot theory, using surgery theory to provide a systematic exposition, (2) to serve as an introduction to algebraic surgery theory, using high-dimensional knots as the geometric motivation.
Download or read it online for free here:
Download link
(3MB, PDF)
Similar books

by Andrew Ranicki - Cambridge University Press
This is the first treatment of the applications of the lower K- and L-groups to the topology of manifolds such as Euclidean spaces, via Whitehead torsion and the Wall finiteness and surgery obstructions. Only elementary constructions are used.
(7214 views)

by F.T. Farrell - Springer
This book is an introduction to the topological rigidity theorem for compact non-positively curved Riemannian manifolds. It contains a quick informal account of the background material from surgery theory and controlled topology prerequesite.
(4997 views)

by S.Chmutov, S.Duzhin, J.Mostovoy - Ohio State Universit
An introduction to the theory of finite type (Vassiliev) knot invariants, with a stress on its combinatorial aspects. Written for readers with no background in this area, and we care more about the basic notions than about more advanced material.
(8342 views)

by Andrew Ranicki, Norman Levitt, Frank Quinn - Springer
The book present original research on a wide range of topics in modern topology: the algebraic K-theory of spaces, the algebraic obstructions to surgery and finiteness, geometric and chain complexes, characteristic classes, and transformation groups.
(12800 views)