Logo

High-dimensional Knot Theory

Large book cover: High-dimensional Knot Theory

High-dimensional Knot Theory
by

Publisher: Springer
ISBN/ASIN: 3540633898
ISBN-13: 9783540633891
Number of pages: 693

Description:
This book is devoted entirely to high-dimensional knot theory. It actually has two aims: (1) to serve as an introduction to high-dimensional knot theory, using surgery theory to provide a systematic exposition, (2) to serve as an introduction to algebraic surgery theory, using high-dimensional knots as the geometric motivation.

Home page url

Download or read it online for free here:
Download link
(3MB, PDF)

Similar books

Book cover: A Primer on Mapping Class GroupsA Primer on Mapping Class Groups
by - Princeton University Press
Our goal in this book is to explain as many important theorems, examples, and techniques as possible, as quickly and directly as possible, while at the same time giving (nearly) full details and keeping the text (nearly) selfcontained.
(6090 views)
Book cover: Lectures on the Geometry of ManifoldsLectures on the Geometry of Manifolds
by - World Scientific Publishing Company
An introduction to the most frequently used techniques in modern global geometry. Suited to the beginning graduate student, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology.
(7226 views)
Book cover: Geometric Topology: Localization, Periodicity and Galois SymmetryGeometric Topology: Localization, Periodicity and Galois Symmetry
by - Springer
In 1970, Sullivan circulated this set of notes introducing localization and completion of topological spaces to homotopy theory, and other important concepts. The notes remain worth reading for the fresh picture they provide for geometric topology.
(4421 views)
Book cover: Diffeomorphisms of Elliptic 3-ManifoldsDiffeomorphisms of Elliptic 3-Manifolds
by - arXiv
The elliptic 3-manifolds are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature. For any elliptic 3-manifold M, the inclusion from the isometry group of M to the diffeomorphism group of M is a homotopy equivalence.
(4289 views)