Logo

Combinatorial Group Theory by Charles F. Miller III

Small book cover: Combinatorial Group Theory

Combinatorial Group Theory
by

Publisher: University of Melbourne
Number of pages: 99

Description:
An early version of these notes was prepared for use by the participants in the Workshop on Algebra, Geometry and Topology held at the Australian National University. They have subsequently been updated and expanded many times for use by students in the subject Combinatorial Group Theory at the University of Melbourne.

Home page url

Download or read it online for free here:
Download link
(490KB, PDF)

Similar books

Book cover: Why are Braids Orderable?Why are Braids Orderable?
by
This book is an account of several quite different approaches to Artin's braid groups, involving self-distributive algebra, uniform finite trees, combinatorial group theory, mapping class groups, laminations, and hyperbolic geometry.
(8102 views)
Book cover: Elements of Group TheoryElements of Group Theory
by - arXiv
The following notes are the basis for a graduate course. They are oriented towards the application of group theory to particle physics, although some of it can be used for general quantum mechanics. They have no pretense of mathematical rigor.
(11318 views)
Book cover: An Introduction to Group Theory: Applications to Mathematical Music TheoryAn Introduction to Group Theory: Applications to Mathematical Music Theory
by - BookBoon
In this text, a modern presentation of the fundamental notions of Group Theory is chosen, where the language of commutative diagrams and universal properties, so necessary in Modern Mathematics, in Physics and Computer Science, is introduced.
(6468 views)
Book cover: Groups and Semigroups: Connections and ContrastsGroups and Semigroups: Connections and Contrasts
by - University of Nebraska-Lincoln
In the present paper, I will discuss some of these connections between group theory and semigroup theory, and I will also discuss some rather surprising contrasts between the theories. I will focus primarily on the theory of inverse semigroups.
(5282 views)