**Notes on Classical Groups**

by Peter J. Cameron

**Publisher**: Queen Mary and Westfield College 2000**Number of pages**: 96

**Description**:

These notes are the content of an M.Sc. course the author gave at Queen Mary and Westfield College, London. Contents: Fields and vector spaces; Linear and projective groups; Polarities and forms; Symplectic groups; Unitary groups; Orthogonal groups; Klein correspondence and triality; A short bibliography on classical groups.

Download or read it online for free here:

**Download link**

(340KB, PDF)

## Similar books

**Lectures on Discrete Subgroups of Lie Groups**

by

**G.D. Mostow**-

**Tata Institute of Fundamental Research**

Contents: Preliminaries; Complexification of a real Linear Lie Group; Intrinsic characterization of K* and E; R-regular elements; Discrete Subgroups; Some Ergodic Properties of Discrete Subgroups; Real Forms of Semi-simple Algebraic Groups; etc.

(

**4642**views)

**An Introduction to the Lie Theory of One-Parameter Groups**

by

**Abraham Cohen**-

**D.C. Heath & co**

The object of this book is to present in an elementary manner, in English, an introduction to Lie s theory of one-parameter groups, with special reference to its application to the solution of differential equations invariant under such groups.

(

**1006**views)

**Algebraic Groups, Lie Groups, and their Arithmetic Subgroups**

by

**J. S. Milne**

This work is a modern exposition of the theory of algebraic group schemes, Lie groups, and their arithmetic subgroups. Algebraic groups are groups defined by polynomials. Those in this book can all be realized as groups of matrices.

(

**7474**views)

**Introduction to Lie Groups and Lie Algebras**

by

**Alexander Kirillov, Jr.**-

**SUNY at Stony Brook**

The book covers the basic contemporary theory of Lie groups and Lie algebras. This classic graduate text focuses on the study of semisimple Lie algebras, developing the necessary theory along the way. Written in an informal style.

(

**9365**views)