**Algebraic geometry and projective differential geometry**

by Joseph M. Landsberg

**Publisher**: arXiv 1998**Number of pages**: 70

**Description**:

The author discusses: Homogeneous varieties, Topology and consequences Projective differential invariants, Varieties with degenerate Gauss images, When can a uniruled variety be smooth?, Dual varieties, Linear systems of bounded and constant rank, Secant and tangential varieties, Systems of quadrics with tangential defects, Recognizing uniruled varieties, Recognizing intersections of quadrics, Recognizing homogeneous spaces, Complete intersections.

Download or read it online for free here:

**Download link**

(630KB, PDF)

## Similar books

**Tight and Taut Submanifolds**

by

**Thomas E. Cecil, Shiing-shen Chern**-

**Cambridge University Press**

Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six articles by leading experts in the field.

(

**6231**views)

**Lectures on Exterior Differential Systems**

by

**M. Kuranishi**-

**Tata Institute of Fundamental Research**

Contents: Parametrization of sets of integral submanifolds (Regular linear maps, Germs of submanifolds of a manifold); Exterior differential systems (Differential systems with independent variables); Prolongation of Exterior Differential Systems.

(

**6571**views)

**Orthonormal Basis in Minkowski Space**

by

**Aleks Kleyn, Alexandre Laugier**-

**arXiv**

In this paper, we considered the definition of orthonormal basis in Minkowski space, the structure of metric tensor relative to orthonormal basis, procedure of orthogonalization. Contents: Preface; Minkowski Space; Examples of Minkowski Space.

(

**4987**views)

**Lectures on Minimal Surface Theory**

by

**Brian White**-

**arXiv**

The goal was to give beginning graduate students an introduction to some of the most important basic facts and ideas in minimal surface theory. Prerequisites: the reader should know basic complex analysis and elementary differential geometry.

(

**3362**views)