**Introduction to Lebesgue Integration**

by W W L Chen

**Publisher**: Macquarie University 1996**Number of pages**: 75

**Description**:

An introduction to some of the basic ideas in Lebesgue integration with the minimal use of measure theory. Contents: the real numbers and countability, the Riemann integral, point sets, the Lebesgue integral, monotone convergence theorem, dominated convergence theorem, etc.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**A Primer of Real Analysis**

by

**Dan Sloughter**-

**Synechism.org**

This is a short introduction to the fundamentals of real analysis. Although the prerequisites are few, the author is assuming that the reader has the level of mathematical maturity of one who has completed the standard sequence of calculus courses.

(

**3089**views)

**Analysis Tools with Applications**

by

**Bruce K. Driver**-

**Springer**

These are lecture notes from Real analysis and PDE: Basic Topological, Metric and Banach Space Notions; Riemann Integral and ODE; Lebesbgue Integration; Hilbert Spaces and Spectral Theory of Compact Operators; Complex Variable Theory; etc.

(

**12294**views)

**Differential Calculus**

by

**Pierre Schapira**-

**Université Paris VI**

The notes provide a short presentation of the main concepts of differential calculus. Our point of view is the abstract setting of a real normed space, and when necessary to specialize to the case of a finite dimensional space endowed with a basis.

(

**5876**views)

**Lectures on Lipschitz Analysis**

by

**Juha Heinonen**

In these lectures, we concentrate on the theory of Lipschitz functions in Euclidean spaces. From the table of contents: Introduction; Extension; Differentiability; Sobolev spaces; Whitney flat forms; Locally standard Lipschitz structures.

(

**7840**views)