**Quasi-Projective Moduli for Polarized Manifolds**

by Eckart Viehweg

**Publisher**: Springer 1995**ISBN/ASIN**: 3540592555**ISBN-13**: 9783540592556**Number of pages**: 326

**Description**:

This book discusses two subjects of quite different nature: Construction methods for quotients of quasi-projective schemes by group actions or by equivalence relations and properties of direct images of certain sheaves under smooth morphisms. Both methods together allow to prove the central result of the text, the existence of quasi-projective moduli schemes, whose points parametrize the set of manifolds with ample canonical divisors or the set of polarized manifolds with a semi-ample canonical divisor.

Download or read it online for free here:

**Download link**

(1.5MB, PDF)

## Similar books

**Lectures on Expansion Techniques In Algebraic Geometry**

by

**S.S. Abhyankar**-

**Tata Institute Of Fundamental Research**

From the table of contents: Meromorphic Curves; G-Adic Expansion and Approximate Roots; Characteristic Sequences of a Meromorphic Curve; The Fundamental Theorem and applications; Irreducibility, Newton's Polygon; The Jacobian Problem.

(

**6469**views)

**Introduction to Algebraic Geometry**

by

**Yuriy Drozd**

From the table of contents: Affine Varieties; Ideals and varieties. Hilbert's Basis Theorem. Regular functions and regular mappings. Projective and Abstract Varieties; Dimension Theory; Regular and singular points; Intersection theory.

(

**8877**views)

**Algebraic Geometry**

by

**Andreas Gathmann**-

**University of Kaiserslautern**

From the contents: Introduction; Affine varieties; Functions, morphisms, and varieties; Projective varieties; Dimension; Schemes; First applications of scheme theory; More about sheaves; Cohomology of sheaves; Intersection theory; Chern classes.

(

**10766**views)

**Noncommutative Algebraic Geometry**

by

**Gwyn Bellamy, et al.**-

**Cambridge University Press**

This book provides an introduction to some of the most significant topics in this area, including noncommutative projective algebraic geometry, deformation theory, symplectic reflection algebras, and noncommutative resolutions of singularities.

(

**2473**views)