**Real Variables: With Basic Metric Space Topology**

by Robert B. Ash

**Publisher**: Institute of Electrical & Electronics Engineering 2007**ISBN/ASIN**: 0486472205**Number of pages**: 213

**Description**:

This is a text for a first course in real variables for students of engineering, physics, and economics, who need to know real analysis in order to cope with the professional literature in their fields. The book tends to avoid standard mathematical writing, with its emphasis on formalism, but a certain amount of abstraction is unavoidable for a coherent presentation.

Download or read it online for free here:

**Download link**

(79MB, PDF)

## Similar books

**Point-Set Topology: Course**

by

**Peter Saveliev**-

**Intelligent Perception**

This is an introductory, one semester course on point-set topology and applications. Topics: topologies, separation axioms, connectedness, compactness, continuity, metric spaces. Intended for advanced undergraduate and beginning graduate students.

(

**4009**views)

**Topology**

by

**David Wilkins**-

**Trinity College, Dublin**

The lecture notes for course 212 (Topology), taught at Trinity College, Dublin. Topics covered: Limits and Continuity, Open and Closed Sets, Metric Spaces, Topological Spaces, Normed Vector Spaces and Functional Analysis, Topology in the Plane.

(

**6806**views)

**Quick Tour of the Topology of R**

by

**StevenHurder, DaveMarker**-

**University of Illinois at Chicago**

These notes are a supplement for the 'standard undergraduate course' in Analysis. The aim is to present a more general perspective on the incipient ideas of topology encountered when exploring the rigorous theorem-proof approach to Calculus.

(

**5015**views)

**Homeomorphisms in Analysis**

by

**Casper Goffman, at al.**-

**American Mathematical Society**

This book features the interplay of two main branches of mathematics: topology and real analysis. The text covers Lebesgue measurability, Baire classes of functions, differentiability, the Blumberg theorem, various theorems on Fourier series, etc.

(

**10359**views)