**Optimization Algorithms on Matrix Manifolds**

by P.-A. Absil, R. Mahony, R. Sepulchre

**Publisher**: Princeton University Press 2007**ISBN/ASIN**: 0691132984**ISBN-13**: 9780691132983**Number of pages**: 240

**Description**:

Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Manifolds**

by

**Neil Lambert**-

**King's College London**

From the table of contents: Manifolds (Elementary Topology and Definitions); The Tangent Space; Maps Between Manifolds; Vector Fields; Tensors; Differential Forms; Connections, Curvature and Metrics; Riemannian Manifolds.

(

**8928**views)

**Special Course in Functional Analysis: (Non-)Commutative Topology**

by

**Ville Turunen**-

**Aalto TKK**

In this book you will learn something about functional analytic framework of topology. And you will get an access to more advanced literature on non-commutative geometry, a quite recent topic in mathematics and mathematical physics.

(

**10455**views)

**Lectures on Sheaf Theory**

by

**C.H. Dowker**-

**Tata Institute of Fundamental Research**

A sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space. Contents: Sheaves; Sections; Cohomology groups of a space with coefficients in a presheaf; Introduction of the family Phi; etc.

(

**8635**views)

**Manifolds and Differential Forms**

by

**Reyer Sjamaar**-

**Cornell University**

The text covers manifolds and differential forms for an audience of undergraduates who have taken a typical calculus sequence, including basic linear algebra and multivariable calculus up to the integral theorems of Green, Gauss and Stokes.

(

**11840**views)