Logo

Mixed Motives by Marc Levine

Large book cover: Mixed Motives

Mixed Motives
by

Publisher: American Mathematical Society
ISBN/ASIN: 0821807854
ISBN-13: 9780821807859
Number of pages: 523

Description:
This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry. The author constructs and describes a triangulated category of mixed motives over an arbitrary base scheme. Most of the classical constructions of cohomology are described in the motivic setting.

Home page url

Download or read it online for free here:
Download link
(3.9MB, PDF)

Similar books

Book cover: Current Topics in Complex Algebraic GeometryCurrent Topics in Complex Algebraic Geometry
by - Cambridge University Press
The 1992/93 year at the Mathematical Sciences Research Institute was devoted to Complex Algebraic Geometry. This volume collects articles that arose from this event, which took place at a time when algebraic geometry was undergoing a major change.
(10423 views)
Book cover: Lectures on Deformations of SingularitiesLectures on Deformations of Singularities
by - Tata Institute of Fundamental Research
These notes are based on a series of lectures given in 1973. The lectures are centered about the work of M. Scahlessinger and R. Elkik on infinitesimal deformations. Contents: Formal Theory and Computations; Elkik's Theorems on Algebraization.
(5453 views)
Book cover: Mirror SymmetryMirror Symmetry
by - American Mathematical Society
The book provides an introduction to the field of mirror symmetry from both a mathematical and physical perspective. After covering the relevant background material, the monograph is devoted to the proof of mirror symmetry from various viewpoints.
(8739 views)
Book cover: Lectures on Algebraic GroupsLectures on Algebraic Groups
by - University of Oregon
Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.
(7921 views)