**Mixed Motives**

by Marc Levine

**Publisher**: American Mathematical Society 1998**ISBN/ASIN**: 0821807854**ISBN-13**: 9780821807859**Number of pages**: 523

**Description**:

This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry. The author constructs and describes a triangulated category of mixed motives over an arbitrary base scheme. Most of the classical constructions of cohomology are described in the motivic setting.

Download or read it online for free here:

**Download link**

(3.9MB, PDF)

## Similar books

**Convex Bodies and Algebraic Geometry**

by

**Tadao Oda**-

**Springer**

The theory of toric varieties describes a fascinating interplay between algebraic geometry and the geometry of convex figures in real affine spaces. This book is a unified up-to-date survey of the various results and interesting applications ...

(

**2882**views)

**Multiplication of Vectors and Structure of 3D Euclidean Space**

by

**Miroslav Josipovic**-

**viXra**

This text is a motivational survey of geometric algebra in 3D. The intention here was to use simple examples and reader is referred to the independent problem solving. The active reading of text is recommended, with paper and pencil in hand.

(

**1991**views)

**Introduction to Projective Varieties**

by

**Enrique Arrondo**-

**Universidad Complutense de Madrid**

The scope of these notes is to present a soft and practical introduction to algebraic geometry, i.e. with very few algebraic requirements but arriving soon to deep results and concrete examples that can be obtained 'by hand'.

(

**6068**views)

**Lectures on Logarithmic Algebraic Geometry**

by

**Arthur Ogus**-

**University of California, Berkeley**

Logarithmic geometry deals with two problems in algebraic geometry: compactification and degeneration. Contents: The geometry of monoids; Log structures and charts; Morphisms of log schemes; Differentials and smoothness; De Rham and Betti cohomology.

(

**9176**views)