**Operator Algebras and Quantum Statistical Mechanics**

by Ola Bratteli, Derek W. Robinson

**Publisher**: Springer 2003**ISBN/ASIN**: 3540170936**ISBN-13**: 9783540170938**Number of pages**: 505

**Description**:

These two volumes present the theory of operator algebras with applications to quantum statistical mechanics. The authors' approach to the operator theory is to a large extent governed by the dictates of the physical applications. The book is self-contained and most proofs are presented in detail, which makes it a useful text for students with a knowledge of basic functional analysis.

Download or read it online for free here:

**Read online**

(online preview)

## Similar books

**Spectral Theory**

by

**Leif Mejlbro**-

**BookBoon**

Spectral Theory - Functional Analysis Examples. Contents: Spectrum and resolvent; The adjoint of a bounded operator; Self adjoint operator; Isometric operators; Unitary and normal operators; Positive operators and projections; Compact operators.

(

**8146**views)

**Banach Spaces of Analytic Functions**

by

**enneth Hoffman**-

**Prentice-Hall**

A classic of pure mathematics, this advanced text explores the intersection of functional analysis and analytic function theory. Close in spirit to abstract harmonic analysis, it is confined to Banach spaces of analytic functions in the unit disc.

(

**3718**views)

**Fredholm Operators and Spectral Flow**

by

**Nils Waterstraat**-

**arXiv**

Fredholm operators are one of the most important classes of linear operators in mathematics. The aim of these notes is an essentially self-contained introduction to the spectral flow for paths of (generally unbounded) selfadjoint Fredholm operators.

(

**2523**views)

**Topics in Real and Functional Analysis**

by

**Gerald Teschl**-

**Universitaet Wien**

This manuscript provides a brief introduction to Real and (linear and nonlinear) Functional Analysis. It covers basic Hilbert and Banach space theory as well as basic measure theory including Lebesgue spaces and the Fourier transform.

(

**9862**views)