**Operator Algebras and Quantum Statistical Mechanics**

by Ola Bratteli, Derek W. Robinson

**Publisher**: Springer 2003**ISBN/ASIN**: 3540170936**ISBN-13**: 9783540170938**Number of pages**: 505

**Description**:

These two volumes present the theory of operator algebras with applications to quantum statistical mechanics. The authors' approach to the operator theory is to a large extent governed by the dictates of the physical applications. The book is self-contained and most proofs are presented in detail, which makes it a useful text for students with a knowledge of basic functional analysis.

Download or read it online for free here:

**Read online**

(online preview)

## Similar books

**Functional Analysis**

by

**Feng Tian, Palle E.T. Jorgensen**-

**arXiv**

Notes from a course which covered themes in functional analysis and operator theory, with an emphasis on topics of special relevance to such applications as representation theory, harmonic analysis, mathematical physics, and stochastic integration.

(

**7084**views)

**Fredholm Operators and Spectral Flow**

by

**Nils Waterstraat**-

**arXiv**

Fredholm operators are one of the most important classes of linear operators in mathematics. The aim of these notes is an essentially self-contained introduction to the spectral flow for paths of (generally unbounded) selfadjoint Fredholm operators.

(

**2631**views)

**An Introduction to Hilbert Module Approach to Multivariable Operator Theory**

by

**Jaydeb Sarkar**-

**arXiv**

An introduction of Hilbert modules over function algebras. The theory of Hilbert modules is presented as combination of commutative algebra, complex geometry and Hilbert spaces and its applications to the theory of n-tuples of commuting operators.

(

**3301**views)

**Lectures On Some Fixed Point Theorems Of Functional Analysis**

by

**F.F. Bonsall**-

**Tata Institute Of Fundamental Research**

The book is concerned with the application of a variety of methods to both non-linear (fixed point) problems and linear (eigenvalue) problems in infinite dimensional spaces. Author was interested in the construction of eigenvectors and eigenvalues.

(

**6079**views)