**Operator Algebras and Quantum Statistical Mechanics**

by Ola Bratteli, Derek W. Robinson

**Publisher**: Springer 2003**ISBN/ASIN**: 3540170936**ISBN-13**: 9783540170938**Number of pages**: 505

**Description**:

These two volumes present the theory of operator algebras with applications to quantum statistical mechanics. The authors' approach to the operator theory is to a large extent governed by the dictates of the physical applications. The book is self-contained and most proofs are presented in detail, which makes it a useful text for students with a knowledge of basic functional analysis.

Download or read it online for free here:

**Read online**

(online preview)

## Similar books

**Shape Analysis, Lebesgue Integration and Absolute Continuity Connections**

by

**Javier Bernal**-

**arXiv.org**

As shape analysis is intricately related to Lebesgue integration and absolute continuity, it is advantageous to have a good grasp of the two notions. We review basic concepts and results about Lebesgue integration and absolute continuity.

(

**345**views)

**Hilbert Space Methods for Partial Differential Equations**

by

**R. E. Showalter**-

**Pitman**

Written for beginning graduate students of mathematics, engineering, and the physical sciences. It covers elements of Hilbert space, distributions and Sobolev spaces, boundary value problems, first order evolution equations, etc.

(

**11215**views)

**Lecture notes on C*-algebras, Hilbert C*-modules, and quantum mechanics**

by

**N.P. Landsman**-

**arXiv**

A graduate-level introduction to C*-algebras, Hilbert C*-modules, vector bundles, and induced representations of groups and C*-algebras, with applications to quantization theory, phase space localization, and configuration space localization.

(

**7988**views)

**An Introduction to Hilbert Module Approach to Multivariable Operator Theory**

by

**Jaydeb Sarkar**-

**arXiv**

An introduction of Hilbert modules over function algebras. The theory of Hilbert modules is presented as combination of commutative algebra, complex geometry and Hilbert spaces and its applications to the theory of n-tuples of commuting operators.

(

**3450**views)