Operator Algebras and Quantum Statistical Mechanics
by Ola Bratteli, Derek W. Robinson
Publisher: Springer 2003
ISBN/ASIN: 3540170936
ISBN-13: 9783540170938
Number of pages: 505
Description:
These two volumes present the theory of operator algebras with applications to quantum statistical mechanics. The authors' approach to the operator theory is to a large extent governed by the dictates of the physical applications. The book is self-contained and most proofs are presented in detail, which makes it a useful text for students with a knowledge of basic functional analysis.
Download or read it online for free here:
Read online
(online preview)
Similar books
An Introduction to Hilbert Module Approach to Multivariable Operator Theoryby Jaydeb Sarkar - arXiv
An introduction of Hilbert modules over function algebras. The theory of Hilbert modules is presented as combination of commutative algebra, complex geometry and Hilbert spaces and its applications to the theory of n-tuples of commuting operators.
(8321 views)
Distribution Theory (Generalized Functions)by Ivan F Wilde
From the table of contents: Introduction; The spaces S and S'; The spaces D and D'; The Fourier transform; Convolution; Fourier-Laplace Transform; Structure Theorem for Distributions; Partial Differential Equations; and more.
(12678 views)
Nonlinear Functional Analysisby Gerald Teschl - University of Vienna
This manuscript provides a brief introduction to nonlinear functional analysis. As an application we consider partial differential equations and prove existence and uniqueness for solutions of the stationary Navier-Stokes equation.
(16413 views)
Jordan Operator Algebrasby Harald Hanche-Olsen, Erling Størmer - Pitman
Introduction to Jordan algebras of operators on Hilbert spaces and their abstract counterparts. It develops the theory of Jordan operator algebras to a point from which the theory of C*- and von Neumann algebras can be generalized to Jordan algebras.
(15305 views)