**Gravitational Waves and Black Holes: an Introduction to General Relativity**

by J.W. van Holten

**Publisher**: arXiv 1997**Number of pages**: 97

**Description**:

In these lectures general relativity is outlined as the classical field theory of gravity, emphasizing physical phenomena rather than mathematical formalism. Dynamical solutions representing traveling waves as well as stationary fields like those of black holes are discussed. Their properties are investigated by studying the geodesic structure of the corresponding space-times, as representing the motion of point-like test particles. The interaction between gravitational, electro-magnetic and scalar fields is also considered.

Download or read it online for free here:

**Download link**

(650KB, PDF)

## Similar books

**Space - Time - Matter**

by

**Hermann Weyl**-

**Methuen & Co.**

A classic of physics -- the first systematic presentation of Einstein's theory of relativity. Long one of the standard texts in the field, this excellent introduction probes deeply into Einstein's general relativity, gravitational waves and energy.

(

**4205**views)

**Complex Geometry of Nature and General Relativity**

by

**Giampiero Esposito**-

**arXiv**

An attempt is made of giving a self-contained introduction to holomorphic ideas in general relativity, following work over the last thirty years by several authors. The main topics are complex manifolds, spinor and twistor methods, heaven spaces.

(

**11226**views)

**Introduction to Differential Geometry and General Relativity**

by

**Stefan Waner**

Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.

(

**16885**views)

**Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction**

by

**Christian Heinicke, Friedrich W. Hehl**-

**arXiv**

Starting from Newton's gravitational theory, we give a general introduction into the spherically symmetric solution of Einstein's vacuum field equation, the Schwarzschild solution, and into one specific stationary solution, the Kerr solution.

(

**3640**views)