Logo

CDBooK: Introduction to Vassiliev Knot invariants

Small book cover: CDBooK: Introduction to Vassiliev Knot invariants

CDBooK: Introduction to Vassiliev Knot invariants
by

Publisher: Ohio State Universit
Number of pages: 460

Description:
This text provides an introduction to the theory of finite type (Vassiliev) knot invariants, with a stress on its combinatorial aspects. It is intended for readers with no or little background in this area, and we care more about a clear explanation of the basic notions and constructions than about widening the exposition to more recent and more advanced material.

Home page url

Download or read it online for free here:
Download link
(6.7MB, PDF)

Similar books

Book cover: The Geometry and Topology of Three-ManifoldsThe Geometry and Topology of Three-Manifolds
by - Mathematical Sciences Research Institute
The text describes the connection between geometry and lowdimensional topology, it is useful to graduate students and mathematicians working in related fields, particularly 3-manifolds and Kleinian groups. Much of the material or technique is new.
(12102 views)
Book cover: Notes on String TopologyNotes on String Topology
by - arXiv
This paper is an exposition of the new subject of String Topology. We present an introduction to this exciting new area, as well as a survey of some of the latest developments, and our views about future directions of research.
(6002 views)
Book cover: A Geometric Approach to Differential FormsA Geometric Approach to Differential Forms
by - arXiv
This is a textbook on differential forms. The primary target audience is sophomore level undergraduates enrolled in a course in vector calculus. Later chapters will be of interest to advanced undergraduate and beginning graduate students.
(8703 views)
Book cover: The Hauptvermutung Book: A Collection of Papers on the Topology of ManifoldsThe Hauptvermutung Book: A Collection of Papers on the Topology of Manifolds
by - Springer
The Hauptvermutung is the conjecture that any two triangulations of a polyhedron are combinatorially equivalent. This conjecture was formulated at the turn of the century, and until its resolution was a central problem of topology.
(5060 views)