**CDBooK: Introduction to Vassiliev Knot invariants**

by S.Chmutov, S.Duzhin, J.Mostovoy

**Publisher**: Ohio State Universit 2009**Number of pages**: 460

**Description**:

This text provides an introduction to the theory of finite type (Vassiliev) knot invariants, with a stress on its combinatorial aspects. It is intended for readers with no or little background in this area, and we care more about a clear explanation of the basic notions and constructions than about widening the exposition to more recent and more advanced material.

Download or read it online for free here:

**Download link**

(6.7MB, PDF)

## Similar books

**Knot Invariants and Higher Representation Theory**

by

**Ben Webster**-

**arXiv**

We construct knot invariants categorifying the quantum knot variants for all representations of quantum groups. We show that these invariants coincide with previous invariants defined by Khovanov for sl_2 and sl_3 and by Mazorchuk-Stroppel...

(

**2859**views)

**High-dimensional Knot Theory**

by

**Andrew Ranicki**-

**Springer**

This book is an introduction to high-dimensional knot theory. It uses surgery theory to provide a systematic exposition, and it serves as an introduction to algebraic surgery theory, using high-dimensional knots as the geometric motivation.

(

**7638**views)

**The Geometry and Topology of Three-Manifolds**

by

**William P Thurston**-

**Mathematical Sciences Research Institute**

The text describes the connection between geometry and lowdimensional topology, it is useful to graduate students and mathematicians working in related fields, particularly 3-manifolds and Kleinian groups. Much of the material or technique is new.

(

**12250**views)

**Lectures on the Geometry of Manifolds**

by

**Liviu I. Nicolaescu**-

**World Scientific Publishing Company**

An introduction to the most frequently used techniques in modern global geometry. Suited to the beginning graduate student, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology.

(

**7289**views)