Logo

Introduction to Real Analysis

Large book cover: Introduction to Real Analysis

Introduction to Real Analysis
by

Publisher: Prentice Hall
ISBN/ASIN: 0130457868
ISBN-13: 9780130457868
Number of pages: 583

Description:
Using an extremely clear and informal approach, this book introduces readers to a rigorous understanding of mathematical analysis and presents challenging math concepts as clearly as possible. The book is written for those who want to gain an understanding of mathematical analysis and challenging mathematical concepts.

Home page url

Download or read it online for free here:
Download link
(2.4MB, PDF)

Similar books

Book cover: Basic Real AnalysisBasic Real Analysis
by - Birkhäuser
A comprehensive treatment with a global view of the subject, emphasizing connections between real analysis and other branches of mathematics. Included throughout are many examples and hundreds of problems, with hints or complete solutions for most.
(1590 views)
Book cover: Real Variables: With Basic Metric Space TopologyReal Variables: With Basic Metric Space Topology
by - Institute of Electrical & Electronics Engineering
A text for a first course in real variables for students of engineering, physics, and economics, who need to know real analysis in order to cope with the professional literature. The subject matter is fundamental for more advanced mathematical work.
(53900 views)
Book cover: Analysis Tools with ApplicationsAnalysis Tools with Applications
by - Springer
These are lecture notes from Real analysis and PDE: Basic Topological, Metric and Banach Space Notions; Riemann Integral and ODE; Lebesbgue Integration; Hilbert Spaces and Spectral Theory of Compact Operators; Complex Variable Theory; etc.
(8882 views)
Book cover: Introduction to Real AnalysisIntroduction to Real Analysis
by - University of Louisville
From the table of contents: Basic Ideas (Sets, Functions and Relations, Cardinality); The Real Numbers; Sequences; Series; The Topology of R; Limits of Functions; Differentiation; Integration; Sequences of Functions; Fourier Series.
(2231 views)