Logo

Homeomorphisms in Analysis by Casper Goffman, at al.

Large book cover: Homeomorphisms in Analysis

Homeomorphisms in Analysis
by

Publisher: American Mathematical Society
ISBN/ASIN: 0821806149
ISBN-13: 9780821806142
Number of pages: 216

Description:
This book features the interplay of two main branches of mathematics: topology and real analysis. The material of the book is largely contained in the research publications of the authors and their students from the past 50 years. Parts of analysis are touched upon in a unique way, for example, Lebesgue measurability, Baire classes of functions, differentiability, the Blumberg theorem, bounded variation in the sense of Cesari, and various theorems on Fourier series and generalized bounded variation of a function.

Home page url

Download or read it online for free here:
Download link
(preview available)

Similar books

Book cover: Elementary TopologyElementary Topology
by - American Mathematical Society
This textbook on elementary topology contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment centered at the notions of fundamental group and covering space.
(16080 views)
Book cover: General TopologyGeneral Topology
by - Université Paris VI
The aim of these lecture notes is to provide a short and self-contained presentation of the main concepts of general topology. Table of contents: Topological spaces; Metric spaces; Compact spaces; Banach spaces; Connectness and homotopy.
(8984 views)
Book cover: Topology Without TearsTopology Without Tears
by
It provides a thorough grounding in general topology: introduction, topological spaces, the Euclidian topology, limit points, homeomorphisms, continuous mappings, metric spaces, compactness, finite products, countable products, Tychonoff's theorem.
(19482 views)
Book cover: Notes on Introductory Point-Set TopologyNotes on Introductory Point-Set Topology
by - Cornell University
These are lecture notes from the first part of an undergraduate course in 2005, covering just the most basic things. From the table of contents: Basic Point-Set Topology; Connectedness; Compactness; Quotient Spaces; Exercises.
(7537 views)