**The Geometry of Iterated Loop Spaces**

by J. P. May

**Publisher**: Springer 1972**ISBN/ASIN**: 3540059040**ISBN-13**: 9783540059042**Number of pages**: 175

**Description**:

This is the first of a series of papers devoted to the study of iterated loop spaces. Our goal is to develop a simple and coherent theory which encompasses most of the known results about such spaces. We begin with some history and a description of the desiderata of such a theory.

Download or read it online for free here:

**Download link**

(4.8MB, PDF)

## Similar books

**E 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra**

by

**J. P. May**-

**Springer**

The theme of this book is infinite loop space theory and its multiplicative elaboration. The main goal is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.

(

**9310**views)

**Topology Illustrated**

by

**Peter Saveliev**-

**Intelligent Perception**

The text follows the content of a fairly typical, two-semester, first course in topology. Some of the topics are: the shape of the universe, configuration spaces, digital image analysis, data analysis, social choice, and, of course, calculus.

(

**8226**views)

**Residues and Duality**

by

**Robin Hartshorne**-

**Springer**

The main purpose of these notes is to prove a duality theorem for cohomology of quasi-coherent sheaves, with respect to a proper morphism of locally noetherian preschemes. Various such theorems are already known. Typical is the duality theorem ...

(

**2423**views)

**Introduction to Topological Groups**

by

**Dikran Dikranjan**-

**UCM**

These notes provide a brief introduction to topological groups with a special emphasis on Pontryaginvan Kampen's duality theorem for locally compact abelian groups. We give a completely self-contained elementary proof of the theorem.

(

**7723**views)