**Partial Differential Equations of Mathematical Physics**

by William W. Symes

**Publisher**: Rice University 2006**Number of pages**: 105

**Description**:

This course aims to make students aware of the physical origins of the main partial differential equations of classical mathematical physics, including the fundamental equations of fluid and solid mechanics, thermodynamics, and classical electrodynamics. These equations form the backbone of modern engineering and many of the sciences, and solving them numerically is a central topic in scientific computation.

Download or read it online for free here:

**Download link**

(490KB, PDF)

## Similar books

**Funky Mathematical Physics Concepts**

by

**Eric L. Michelsen**-

**UCSD**

This text covers some of the unusual or challenging concepts in graduate mathematical physics. This work is meant to be used with any standard text, to help emphasize those things that are most confusing for new students.

(

**4137**views)

**Classical and Quantum Mechanics via Lie algebras**

by

**Arnold Neumaier, Dennis Westra**-

**arXiv**

This book presents classical, quantum, and statistical mechanics in an algebraic setting, thereby introducing mathematicians, physicists, and engineers to the ideas relating classical and quantum mechanics with Lie algebras and Lie groups.

(

**8925**views)

**An elementary treatise on Fourier's series and spherical, cylindrical, and ellipsoidal harmonics**

by

**William Elwood Byerly**-

**Ginn and company**

From the table of contents: Development in Trigonometric Series; Convergence of Fourier's Series; Solution of Problems in Physics by the Aid of Fourier's Integrals and Fourier's Series; Zonal Harmonics; Spherical Harmonics; Cylindrical Harmonics; ...

(

**11522**views)

**Random Matrix Models and Their Applications**

by

**Pavel Bleher, Alexander Its**-

**Cambridge University Press**

The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems.

(

**11521**views)