**Symplectic Geometry**

by Ana Cannas da Silva

**Publisher**: Princeton University 2004**Number of pages**: 109

**Description**:

This is an overview of symplectic geometry – the geometry of symplectic manifolds. From a language for classical mechanics in the XVIII century, symplectic geometry has matured since the 1960’s to a rich and central branch of differential geometry and topology. A current survey can thus only aspire to give a partial flavor on this exciting field.

Download or read it online for free here:

**Download link**

(840KB, PDF)

## Similar books

**Introduction to Differential Topology**

by

**Uwe Kaiser**-

**Boise State University**

This is a preliminary version of introductory lecture notes for Differential Topology. We try to give a deeper account of basic ideas of differential topology than usual in introductory texts. Many examples of manifolds are worked out in detail.

(

**6326**views)

**Differential Topology and Morse Theory**

by

**Dirk Schuetz**-

**University of Sheffield**

These notes describe basic material about smooth manifolds (vector fields, flows, tangent bundle, partitions of unity, Whitney embedding theorem, foliations, etc...), introduction to Morse theory, and various applications.

(

**6556**views)

**Introduction to Symplectic and Hamiltonian Geometry**

by

**Ana Cannas da Silva**

The text covers foundations of symplectic geometry in a modern language. It describes symplectic manifolds and their transformations, and explains connections to topology and other geometries. It also covers hamiltonian fields and hamiltonian actions.

(

**9770**views)

**Differential Topology**

by

**Bjorn Ian Dundas**-

**Johns Hopkins University**

This is an elementary text book for the civil engineering students with no prior background in point-set topology. This is a rather terse mathematical text, but provided with an abundant supply of examples and exercises with hints.

(

**6635**views)