**E 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra**

by J. P. May

**Publisher**: Springer 1977**ISBN/ASIN**: 3540081364**ISBN-13**: 9783540081364**Number of pages**: 280

**Description**:

The theme of this book is infinite loop space theory and its multiplicative elaboration. This is the appropriate framework for the most structured development of algebraic K-theory, by which we understand the homotopy theory of discrete categories, and one of the main goals of this volume is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.

Download or read it online for free here:

**Download link**

(8.9MB, PDF)

## Similar books

**Residues and Duality**

by

**Robin Hartshorne**-

**Springer**

The main purpose of these notes is to prove a duality theorem for cohomology of quasi-coherent sheaves, with respect to a proper morphism of locally noetherian preschemes. Various such theorems are already known. Typical is the duality theorem ...

(

**2310**views)

**Introduction to Characteritic Classes and Index Theory**

by

**Jean-Pierre Schneiders**-

**Universidade de Lisboa**

This text deals with characteristic classes of real and complex vector bundles and Hirzebruch-Riemann-Roch formula. We will present a few basic but fundamental facts which should help the reader to gain a good idea of the mathematics involved.

(

**7096**views)

**Lecture Notes on Motivic Cohomology**

by

**Carlo Mazza, Vladimir Voevodsky, Charles Weibel**-

**AMS**

This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings.

(

**6991**views)

**Modern Algebraic Topology**

by

**D. G. Bourgin**-

**Macmillan**

Contents: Preliminary algebraic background; Chain relationships; The absolute homology groups and basic examples; Relative omology modules; Manifolds and fixed cells; Omology exact sequences; Simplicial methods and inverse and direct limits; etc.

(

**4541**views)