Logo

E 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra

Large book cover: E 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra

E 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra
by

Publisher: Springer
ISBN/ASIN: 3540081364
ISBN-13: 9783540081364
Number of pages: 280

Description:
The theme of this book is infinite loop space theory and its multiplicative elaboration. This is the appropriate framework for the most structured development of algebraic K-theory, by which we understand the homotopy theory of discrete categories, and one of the main goals of this volume is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.

Home page url

Download or read it online for free here:
Download link
(8.9MB, PDF)

Similar books

Book cover: Homotopy Theories and Model CategoriesHomotopy Theories and Model Categories
by - University of Notre Dame
This paper is an introduction to the theory of model categories. The prerequisites needed for understanding this text are some familiarity with CW-complexes, chain complexes, and the basic terminology associated with categories.
(4899 views)
Book cover: An Elementary Illustrated Introduction to Simplicial SetsAn Elementary Illustrated Introduction to Simplicial Sets
by - arXiv.org
This is an introduction to simplicial sets and simplicial homotopy theory with a focus on the combinatorial aspects of the theory and their geometric/topological origins. Accessible to students familiar with the fundamentals of algebraic topology.
(3420 views)
Book cover: Manifold TheoryManifold Theory
by - UCLA
These notes are a supplement to a first year graduate course in manifold theory. These are the topics covered: Manifolds (Smooth Manifolds, Projective Space, Matrix Spaces); Basic Tensor Analysis; Basic Cohomology Theory; Characteristic Classes.
(4793 views)
Book cover: The Classification Theorem for Compact SurfacesThe Classification Theorem for Compact Surfaces
by
In this book the authors present the technical tools needed for proving rigorously the classification theorem, give a detailed proof using these tools, and also discuss the history of the theorem and its various proofs.
(9853 views)