Logo

E 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra

Large book cover: E 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra

E 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra
by

Publisher: Springer
ISBN/ASIN: 3540081364
ISBN-13: 9783540081364
Number of pages: 280

Description:
The theme of this book is infinite loop space theory and its multiplicative elaboration. This is the appropriate framework for the most structured development of algebraic K-theory, by which we understand the homotopy theory of discrete categories, and one of the main goals of this volume is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.

Home page url

Download or read it online for free here:
Download link
(8.9MB, PDF)

Similar books

Book cover: An Elementary Illustrated Introduction to Simplicial SetsAn Elementary Illustrated Introduction to Simplicial Sets
by - arXiv.org
This is an introduction to simplicial sets and simplicial homotopy theory with a focus on the combinatorial aspects of the theory and their geometric/topological origins. Accessible to students familiar with the fundamentals of algebraic topology.
(7285 views)
Book cover: Differential Forms and Cohomology: CourseDifferential Forms and Cohomology: Course
by - Intelligent Perception
Differential forms provide a modern view of calculus. They also give you a start with algebraic topology in the sense that one can extract topological information about a manifold from its space of differential forms. It is called cohomology.
(6924 views)
Book cover: Higher Topos TheoryHigher Topos Theory
by - Princeton University Press
Jacob Lurie presents the foundations of higher category theory, using the language of weak Kan complexes, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language.
(11950 views)
Book cover: Algebraic TopologyAlgebraic Topology
by - Cambridge University Press
Introductory text suitable for use in a course or for self-study, it covers fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The geometric aspects of the subject are emphasized.
(35353 views)