**Manifolds of Differentiable Mappings**

by Peter W. Michor

**Publisher**: Birkhauser 1980**ISBN/ASIN**: 0906812038**ISBN-13**: 9780906812037**Number of pages**: 165

**Description**:

This book is devoted to the theory of manifolds of differentiable mappings and contains result which can be proved without the help of a hard implicit function theorem of nuclear function spaces. All the necessary background is developed in detail.

Download or read it online for free here:

**Download link**

(15MB, PDF)

## Similar books

**Contact Topology**

by

**George Torres, Robert Gompf**-

**University of Texas at Austin**

This is a course on contact manifolds, which are odd dimensional manifolds with an extra structure called a contact structure. Most of our study will focus on three dimensional manifolds, though many of these notions hold for any odd dimension.

(

**854**views)

**Tight and Taut Submanifolds**

by

**Thomas E. Cecil, Shiing-shen Chern**-

**Cambridge University Press**

Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six articles by leading experts in the field.

(

**7651**views)

**Lecture Notes on Differentiable Manifolds**

by

**Jie Wu**-

**National University of Singapore**

Contents: Tangent Spaces, Vector Fields in Rn and the Inverse Mapping Theorem; Topological and Differentiable Manifolds, Diffeomorphisms, Immersions, Submersions and Submanifolds; Examples of Manifolds; Fibre Bundles and Vector Bundles; etc.

(

**8630**views)

**Introduction to Differential Topology, de Rham Theory and Morse Theory**

by

**Michael Muger**-

**Radboud University**

Contents: Why Differential Topology? Basics of Differentiable Manifolds; Local structure of smooth maps; Transversality Theory; More General Theory; Differential Forms and de Rham Theory; Tensors and some Riemannian Geometry; Morse Theory; etc.

(

**8446**views)