Logo

Manifolds of Differentiable Mappings

Small book cover: Manifolds of Differentiable Mappings

Manifolds of Differentiable Mappings
by

Publisher: Birkhauser
ISBN/ASIN: 0906812038
ISBN-13: 9780906812037
Number of pages: 165

Description:
This book is devoted to the theory of manifolds of differentiable mappings and contains result which can be proved without the help of a hard implicit function theorem of nuclear function spaces. All the necessary background is developed in detail.

Home page url

Download or read it online for free here:
Download link
(15MB, PDF)

Similar books

Book cover: Contact TopologyContact Topology
by - University of Texas at Austin
This is a course on contact manifolds, which are odd dimensional manifolds with an extra structure called a contact structure. Most of our study will focus on three dimensional manifolds, though many of these notions hold for any odd dimension.
(854 views)
Book cover: Tight and Taut SubmanifoldsTight and Taut Submanifolds
by - Cambridge University Press
Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six articles by leading experts in the field.
(7651 views)
Book cover: Lecture Notes on Differentiable ManifoldsLecture Notes on Differentiable Manifolds
by - National University of Singapore
Contents: Tangent Spaces, Vector Fields in Rn and the Inverse Mapping Theorem; Topological and Differentiable Manifolds, Diffeomorphisms, Immersions, Submersions and Submanifolds; Examples of Manifolds; Fibre Bundles and Vector Bundles; etc.
(8630 views)
Book cover: Introduction to Differential Topology, de Rham Theory and Morse TheoryIntroduction to Differential Topology, de Rham Theory and Morse Theory
by - Radboud University
Contents: Why Differential Topology? Basics of Differentiable Manifolds; Local structure of smooth maps; Transversality Theory; More General Theory; Differential Forms and de Rham Theory; Tensors and some Riemannian Geometry; Morse Theory; etc.
(8446 views)