**Introduction to Symplectic and Hamiltonian Geometry**

by Ana Cannas da Silva

2007**Number of pages**: 158

**Description**:

This text covers foundations of symplectic geometry in a modern language. We start by describing symplectic manifolds and their transformations, and by explaining connections to topology and other geometries. Next we study hamiltonian fields, hamiltonian actions and some of their practical applications in the context of mechanics and dynamical systems. We assume previous knowledge of the geometry of smooth manifolds, though the main required facts are collected in appendices.

Download or read it online for free here:

**Download link**

(810KB, PDF)

## Similar books

**Lecture Notes on Differentiable Manifolds**

by

**Jie Wu**-

**National University of Singapore**

Contents: Tangent Spaces, Vector Fields in Rn and the Inverse Mapping Theorem; Topological and Differentiable Manifolds, Diffeomorphisms, Immersions, Submersions and Submanifolds; Examples of Manifolds; Fibre Bundles and Vector Bundles; etc.

(

**7030**views)

**Differential Topology**

by

**Bjorn Ian Dundas**-

**Johns Hopkins University**

This is an elementary text book for the civil engineering students with no prior background in point-set topology. This is a rather terse mathematical text, but provided with an abundant supply of examples and exercises with hints.

(

**5425**views)

**Differential Topology and Morse Theory**

by

**Dirk Schuetz**-

**University of Sheffield**

These notes describe basic material about smooth manifolds (vector fields, flows, tangent bundle, partitions of unity, Whitney embedding theorem, foliations, etc...), introduction to Morse theory, and various applications.

(

**5431**views)

**Ricci Flow and the Poincare Conjecture**

by

**John Morgan, Gang Tian**-

**American Mathematical Society**

This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's preprints. The book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.

(

**6690**views)