**Introduction to Symplectic and Hamiltonian Geometry**

by Ana Cannas da Silva

2007**Number of pages**: 158

**Description**:

This text covers foundations of symplectic geometry in a modern language. We start by describing symplectic manifolds and their transformations, and by explaining connections to topology and other geometries. Next we study hamiltonian fields, hamiltonian actions and some of their practical applications in the context of mechanics and dynamical systems. We assume previous knowledge of the geometry of smooth manifolds, though the main required facts are collected in appendices.

Download or read it online for free here:

**Download link**

(810KB, PDF)

## Similar books

**Differential Topology of Fiber Bundles**

by

**Karl-Hermann Neeb**-

**FAU Erlangen-Nuernberg**

From the table of contents: Basic Concepts (The concept of a fiber bundle, Coverings, Morphisms...); Bundles and Cocycles; Cohomology of Lie Algebras; Smooth G-valued Functions; Connections on Principal Bundles; Curvature; Perspectives.

(

**6138**views)

**Lectures on Symplectic Geometry**

by

**Ana Cannas da Silva**-

**Springer**

An introduction to symplectic geometry and topology, it provides a useful and effective synopsis of the basics of symplectic geometry and serves as the springboard for a prospective researcher. The text is written in a clear, easy-to-follow style.

(

**10810**views)

**Differential Topology and Morse Theory**

by

**Dirk Schuetz**-

**University of Sheffield**

These notes describe basic material about smooth manifolds (vector fields, flows, tangent bundle, partitions of unity, Whitney embedding theorem, foliations, etc...), introduction to Morse theory, and various applications.

(

**6726**views)

**Introduction to Differential Topology**

by

**Uwe Kaiser**-

**Boise State University**

This is a preliminary version of introductory lecture notes for Differential Topology. We try to give a deeper account of basic ideas of differential topology than usual in introductory texts. Many examples of manifolds are worked out in detail.

(

**6495**views)