**Dynamics in One Complex Variable**

by John Milnor

**Publisher**: Princeton University Press 1991**ISBN/ASIN**: 0691124884**ISBN-13**: 9780691124889**Number of pages**: 146

**Description**:

This volume studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. These lectures are intended to introduce some key ideas in the field, and to form a basis for further study. The reader is assumed to be familiar with the rudiments of complex variable theory and of two-dimensional differential geometry, as well as some basic topics from topology.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Introduction to Complex Analysis**

by

**W W L Chen**-

**Macquarie University**

Introduction to some of the basic ideas in complex analysis: complex numbers; foundations of complex analysis; complex differentiation; complex integrals; Cauchy's integral theorem; Cauchy's integral formula; Taylor series; Laurent series; etc.

(

**10502**views)

**The Elementary Properties of the Elliptic Functions**

by

**Alfred Cardew Dixon**-

**Macmillan**

This textbook will supply the wants of those students who, for reasons connected with examinations or otherwise, wish to have a knowledge of the elements of Elliptic Functions, not including the Theory of Transformations and the Theta Functions.

(

**3149**views)

**Lectures on the Mean-Value and Omega Theorems for the Riemann Zeta-Function**

by

**K. Ramachandra**-

**Tata Institute of Fundamental Research**

This short book is a text on the mean-value and omega theorems for the Riemann Zeta-function. The author includes discussion of some fundamental theorems on Titchmarsh series and applications, and Titchmarsh's Phenomenon.

(

**4673**views)

**Complex Analysis**

by

**Christian Berg**-

**Kobenhavns Universitet**

Contents: Holomorphic functions; Contour integrals and primitives; The theorems of Cauchy; Applications of Cauchy's integral formula; Zeros and isolated singularities; The calculus of residues; The maximum modulus principle; Moebius transformations.

(

**1466**views)