Logo

Differential Geometry in Physics

Small book cover: Differential Geometry in Physics

Differential Geometry in Physics
by

Publisher: University of North Carolina at Wilmington
Number of pages: 61

Description:
These notes were developed as a supplement to a course on Differential Geometry at the advanced undergraduate, first year graduate level, which the author has taught for several years. There are many excellent texts in Differential Geometry but very few have an early introduction to differential forms and their applications to Physics. It is the purpose of these notes to bridge some of these gaps and thus help the student get a more profound understanding of the concepts involved.

Home page url

Download or read it online for free here:
Download link
(340KB, PDF)

Similar books

Book cover: Noncommutative GeometryNoncommutative Geometry
by - Academic Press
The definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics. Ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics.
(7959 views)
Book cover: Geometry in PhysicsGeometry in Physics
by
Contents: Exterior Calculus (Exterior Algebra, Differential forms in Rn, Metric, Gauge theory); Manifolds (Basic structures, Tangent space); Lie groups (Lie group actions, Lie algebras, Lie algebra actions, From Lie algebras to Lie groups).
(6738 views)
Book cover: The Geometrization of PhysicsThe Geometrization of Physics
by - University of California at Irvine
The major goal of these notes is to develop an observation that not only can gauge fields of the Yang-Mills type be unified with the Einstein model of gravitation, but also that when this unification is made they are described by pure geometry.
(7580 views)
Book cover: Geometry, Topology and PhysicsGeometry, Topology and Physics
by - Technische Universitat Wien
From the table of contents: Topology (Homotopy, Manifolds, Surfaces, Homology, Intersection numbers and the mapping class group); Differentiable manifolds; Riemannian geometry; Vector bundles; Lie algebras and representations; Complex manifolds.
(10941 views)