**Differential Geometry in Physics**

by Gabriel Lugo

**Publisher**: University of North Carolina at Wilmington 2006**Number of pages**: 61

**Description**:

These notes were developed as a supplement to a course on Differential Geometry at the advanced undergraduate, first year graduate level, which the author has taught for several years. There are many excellent texts in Differential Geometry but very few have an early introduction to differential forms and their applications to Physics. It is the purpose of these notes to bridge some of these gaps and thus help the student get a more profound understanding of the concepts involved.

Download or read it online for free here:

**Download link**

(340KB, PDF)

## Similar books

**Introduction to Braided Geometry and q-Minkowski Space**

by

**Shahn Majid**-

**arXiv**

Systematic introduction to the geometry of linear braided spaces. These are versions of Rn in which the coordinates xi have braid-statistics described by an R-matrix. From this starting point we survey the author's braided-approach to q-deformation.

(

**5705**views)

**Lectures on complex geometry, Calabi-Yau manifolds and toric geometry**

by

**Vincent Bouchard**-

**arXiv**

These are introductory lecture notes on complex geometry, Calabi-Yau manifolds and toric geometry. We first define basic concepts of complex and Kahler geometry. We then proceed with an analysis of various definitions of Calabi-Yau manifolds.

(

**6067**views)

**Edinburgh Lectures on Geometry, Analysis and Physics**

by

**Michael Atiyah**-

**arXiv**

These notes are based on a set of six lectures that the author gave in Edinburgh and they cover some topics in the interface between Geometry and Physics. They involve some unsolved problems and they may stimulate readers to investigate them.

(

**6344**views)

**Noncommutative Geometry, Quantum Fields and Motives**

by

**Alain Connes, Matilde Marcolli**-

**American Mathematical Society**

The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role.

(

**8525**views)