Logo

Complex Geometry of Nature and General Relativity

Complex Geometry of Nature and General Relativity
by

Publisher: arXiv
Number of pages: 229

Description:
An attempt is made of giving a self-contained introduction to holomorphic ideas in general relativity, following work over the last thirty years by several authors. The main topics are complex manifolds, spinor and twistor methods, heaven spaces.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: Lectures on Complex Analytic ManifoldsLectures on Complex Analytic Manifolds
by - Tata Institute of Fundamental Research
Topics covered: Differentiable Manifolds; C maps, diffeomorphisms. Effect of a map; The Tensor Bundles; Existence and uniqueness of the exterior differentiation; Manifolds with boundary; Integration on chains; Some examples of currents; etc.
(7397 views)
Book cover: Lectures On Levi Convexity Of Complex Manifolds And Cohomology Vanishing TheoremsLectures On Levi Convexity Of Complex Manifolds And Cohomology Vanishing Theorems
by - Tata Institute Of Fundamental Research
These are notes of lectures which the author gave in the winter 1965. Topics covered: Vanishing theorems for hermitian manifolds; W-ellipticity on Riemannian manifolds; Local expressions for and the main inequality; Vanishing Theorems.
(5593 views)
Book cover: Kähler-Einstein metrics: Old and NewKähler-Einstein metrics: Old and New
by - arXiv.org
We present classical and recent results on Kaehler-Einstein metrics on compact complex manifolds, focusing on existence, obstructions and relations to algebraic geometric notions of stability (K-stability). These are the notes for author's course.
(1815 views)
Book cover: Dynamics in One Complex VariableDynamics in One Complex Variable
by - Princeton University Press
This text studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the case of rational maps of the Riemann sphere. The book introduces some key ideas in the field, and forms a basis for further study.
(11208 views)