Logo

Introduction to Mathematical Philosophy

Small book cover: Introduction to Mathematical Philosophy

Introduction to Mathematical Philosophy
by

Publisher: University of Massachusetts Amherst
Number of pages: 181

Description:
This book is intended for those who have no previous acquaintance with the topics of which it treats, and no more knowledge of mathematics than can be acquired at a primary school. It sets forth in elementary form the logical definition of number, the analysis of the notion of order, the modern doctrine of the infinite, and the theory of descriptions and classes as symbolic fictions.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Natural TopologyNatural Topology
by - arXiv
We give a theoretical and applicable framework for dealing with real-world phenomena. Joining pointwise and pointfree notions in BISH, natural topology gives a faithful idea of important concepts and results in intuitionism.
(4625 views)
Book cover: Intuitionistic LogicIntuitionistic Logic
by - Universiteit van Amsterdam
In this course we give an introduction to intuitionistic logic. We concentrate on the propositional calculus mostly, make some minor excursions to the predicate calculus and to the use of intuitionistic logic in intuitionistic formal systems.
(6788 views)
Book cover: The Algebra of LogicThe Algebra of Logic
by - Project Gutenberg
Mathematical Logic is a necessary preliminary to logical Mathematics. The present work is concerned with the 'calculus ratiocinator' aspect, and shows, in an admirably succinct form, the beauty of the calculus of logic regarded as an algebra.
(7371 views)
Book cover: Introduction to Mathematical Logic: A problem solving courseIntroduction to Mathematical Logic: A problem solving course
by - arXiv
This is a set of questions written for a course in Mathematical Logic. Topics covered are: propositional logic; axioms of ZFC; wellorderings and equivalents of AC; ordinal and cardinal arithmetic; first order logic, and the compactness theorem; etc.
(8944 views)