Logo

Introduction to Mathematical Philosophy

Small book cover: Introduction to Mathematical Philosophy

Introduction to Mathematical Philosophy
by

Publisher: University of Massachusetts Amherst
Number of pages: 181

Description:
This book is intended for those who have no previous acquaintance with the topics of which it treats, and no more knowledge of mathematics than can be acquired at a primary school. It sets forth in elementary form the logical definition of number, the analysis of the notion of order, the modern doctrine of the infinite, and the theory of descriptions and classes as symbolic fictions.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: An Introduction to Mathematical LogicAn Introduction to Mathematical Logic
by
This text treats pure logic and in this connection introduces to basic proof-theoretic techniques. Fundamentals of model theory and those of recursion theory are dealt with. Furthermore, some extensions of first order logic are treated.
(7266 views)
Book cover: What is Mathematics: Gödel's Theorem and AroundWhat is Mathematics: Gödel's Theorem and Around
by - University of Latvia
Textbook for students in mathematical logic and foundations of mathematics. Contents: Platonism, intuition and the nature of mathematics; Axiomatic Set Theory; First Order Arithmetic; Hilbert's Tenth Problem; Incompleteness Theorems; Godel's Theorem.
(1995 views)
Book cover: The Haskell Road to Logic, Maths and ProgrammingThe Haskell Road to Logic, Maths and Programming
by - College Publications
The purpose of this book is to teach logic and mathematical reasoning in practice, and to connect logical reasoning with computer programming. The programming language that will be our tool for this is Haskell, a member of the Lisp family.
(10161 views)
Book cover: Algebraic LogicAlgebraic Logic
by
Part I of the book studies algebras which are relevant to logic. Part II deals with the methodology of solving logic problems by (i) translating them to algebra, (ii) solving the algebraic problem, and (iii) translating the result back to logic.
(10856 views)